sustainable nanostructured materials for energy storage m
play

Sustainable Nanostructured Materials for Energy Storage M t i l f - PowerPoint PPT Presentation

Sustainable Nanostructured Materials for Energy Storage M t i l f E St Jaephil Cho I t Interdisciplinary School of Green Energy and di i li S h l f G E d Converging Research Center for Innovative Battery Technologies UNIST Issues


  1. Sustainable Nanostructured Materials for Energy Storage M t i l f E St Jaephil Cho I t Interdisciplinary School of Green Energy and di i li S h l f G E d Converging Research Center for Innovative Battery Technologies UNIST

  2. Issues  Capacity (Energy density)  Capacity (Energy density) Capacity (Energy density) Capacity (Energy density)  Flexibility Flexibility  Fast Charging/Discharging Fast Charging/Discharging g g g g g g g g

  3. R & D Target 400 400 New material Future 350 /kg) breakthrough g Present sity (Wh/ ht Weight 300 250 rgy dens Ligh 200 ight ener 150 100 Li Rechargeable Battery Li Rechargeable Battery Wei Small size 50 Ni-MH Ni-Cd Pb Pb 0 0 0 100 200 300 400 500 600 700 800 900 1000 Volume energy density (Wh/l)

  4. Contents 1 Introduction Introduction 2 Cathodes 2 Cathodes 3 Anodes 3 Anodes 3 Anodes 3 Anodes 4 4 Summaries Summaries Summaries Summaries

  5. Introduction Introduction Cathodes

  6. Application area 2. EV or HEV 1. Mobile Device ♣ High Safety ♣ High Capacity ♣ g p y ♣ Wide temperature range ♣ Wide temperature range - Global Communication System ♣ High Power - 3G/4G ♣ Low Cost ♣ Good cycle life y Car - Cellular Phone - Notebook 3. Power Tool ♣ High Safety ♣ High Power Small ♣ Low Cost ♣ Fast Sepc. Charging/Discharging ♣ Low Cost Large Large 5.Energy Storage ♣ Maintenance Free Military (excellent cycle life) ( ll t l lif ) 4. Stationary Battery ♣ Excellent charge/discharge ♣ High Power efficiency ♣ Maintenance Free ♣ Low Cost ♣ Low Cost

  7. Small Size: Small Size: Diversity & specification of market Diversity & specification of market y y p p => => Rapid growth expected apid growth expected etc etc etc etc Mobile flexible market Mobile flexible market Note pc Note pc 12% 12% 38% 38% Flexible phone Flexible phone, flexible display, Flexible phone, flexible display, Flexible phone flexible display flexible display Cell phone Cell phone C ll C ll h h 50% 50% E- -paper, wearable PC, etc paper, wearable PC, etc ( 2008 yr) 2008 2008 2008 yr) ) ) Market size: 8 billion Note- Note -pc pc 23% 23% 23% 23% Mobile display Mobile display 23% 23% Cell phone Cell phone 30% 30% Market size: 20 billion

  8. Flexibility Flexible phone (Kyocera) Flexible phone (Kyocera)  Converging Converging Shape/ Shape/ BT BT + NT NT + IT IT + ET ET Design Flexibility Design Flexibility  Flexible & Flexible & Thin Thin- -film type film type Wireless- Wireless -Charging Charging Safety / Long cycle life S f t Safety / Long cycle life S f t / L / L l l lif lif Flexible OLED (LG Display) Flexible OLED (LG Display) Wireless/ Fast charging Wireless/ Fast charging Solid Type Solid Type E-paper FLEPia (Fujitsu) The Morph Concept phone (Nokia)* *http://www.youtube.com/watch?v=IX-gTobCJHs

  9. Current Technology New Technology* * Angew Chem. Int. Ed . 49, 2146, 2010 Adv. Mater. 22, 415, 2010

  10. Requirements for Electrode Materials Requirements for Electrode Materials  Cathodes  Electrode density  Cycle life  Structural stability (thermal stability) g g p y  Fast charging capability Cui et al. Nano Lett. 8, 3948 (2008) Nanoclustered Morphology  Anodes  Anodes  Electrode density  Cycle life  Cycle life  Fast charging capability  Volume expansion (<15%)  Volume expansion (<15%) J. Mater. Chem. 18, 2257 (2008)  Side reactions with electrolytes

  11. 1 1 기술의 기술의 개요 개요 2 연구목표 2 연 연 연구목표 및 연구단 목 목 및 연 연 연구단 구성 단 단 구성 성 Cathodes Cathodes Cathodes Cathodes 3 3 추진전략 3 추진전략 및 접근방법 추진전략 및 접근방법 추진전략 접근방법 접근방법 4 연구단 연구단 연구역량 연구역량 5 연구결과의 연구결과의 활용방안 활용방안 및 및 기대효과 기대효과

  12. Lithium Rich Layered Materials Lithium Rich Layered Materials Spinel Birnnesite (K x MnO 2 ) Nanowire Nanoplate L Layered α -NaFeO 2 d N F O Nano Lett. 8, 957(2008) Chem. Commu. 218 (2009)

  13. (c) (a) pH = 10, 5hrs As-prepared Ni 0.3 Mn 0.7 O 2 200 o C Layered Layered pH = 7, 2hrs R-3m Li[Li Li[Li 0.15 0.15 Ni Ni 0.25 0.25 Mn Mn 0.4 0.4 ]O ]O 2 Spinel Spinel 150 o C 150 o C (b) pH = 10, 2hrs pH = 2, 1.5hrs pH = 10, 5hrs pH = 2, 5hrs

  14. Cycling Results Cycling Results 5.0 2000 (a) al (V) (vs.Li) 1st 4.5 mAh/gv) 2nd 80th 4.0 10th cycle 1000 30th cycle dQ/dV(m 3.5 3 5 50th cycle 50th cycle Cell potentia 80th cycle 3.0 0 2.5 0.3C rate (120mA/g) 2.0 -1000 2 0 2.0 2.5 2 5 3 0 3.0 3 5 3.5 4 0 4.0 4.5 4 5 0 0 50 50 100 100 150 150 200 200 250 250 300 300 350 350 400 400 Cell potential(V) Capacity(mAh/g) city (mAh/g) 320 icient (%) 100 (d) 300 96 280 280 oulombic coeffi scharge capac 92 260 88 240 84 (b) (b) 220 220 Co Di  (d and e) after cycling 0 10 20 30 40 50 60 70 80 Cycle number 320 y (mAh/g) (e) 0.3C 280 Nanowire 1C 3C 3C harge capacity 5C 240 7C 200 Nanoplate 160 (c) (c) Disc 120 0 10 20 30 40 50 Cycle number

  15. Anodes 2 Anodes 2. 2. Anodes Anodes Anodes

  16. Candidates H He Li Be B C N O F Ne Na Na Mg Mg Al Al Si Si P P S S Cl Cl Ar Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Fr Ra Ac Lithium reaction mechanisms Sn, Ge, and Si: M + xLi + + xe - ↔ Li x M 1) SnO + 4Li + + 4e − → Sn + 2Li O (1) 2) 2) SnO 2 + 4Li + 4e → Sn + 2Li 2 O (1) Sn + x Li + + x e − ↔ Li x Sn ( 0 ≤ x ≤ 4 . 4 ) (2) M II O + 2Li + + 2e − ↔ Li 2 O +M 0 (3d transition metal oxide) 3) 4) MP n ↔ Li x MP n (Li-intercalation) (1) MP n ↔ M (Li x M) + Li x P (metallization or metal alloying) (2)

  17. Volume change issue  Particle pulverization and isolation from the Cu collector  Particle pulverization and isolation from the Cu collector  Rapid capacity fade 2.5 2.5 2.0 2 3 ge(V) 1 1.5 Voltag 1.0 0.5 20 μ m 1 μ m 0.0 0 1000 2000 3000 4000 Capacity(mAh/g)

  18. Gravimetric vs. Volumetric capacity 4000 4000 Li Li Li 4.4 Si Si pacity ity 3000 3000 M) h/g-LixM ic Capaci etric Cap Li 4.1 Si Li 4.1 Ge LixM) Li Li 4.1 Sn Li 4 Pb (mAh 2000 2000 2000 2000 Gravime Volumetr (mAh/cc- Li 4.1 Ge Li 4.1 Sn G V ( 1000 1000 LiC 6 Li 4 Pb LiC 6 0 0

  19. Strategies*  Control of particle size (uniform dispersion) p ( p )  Formation of dimensionally stable coating layer  Artificial formation of “Buffer Zone” so as to alleviate volume change Charge Discharge *Adv. Funct. Mater. 19, 1497, 2009, Feature article Energy & Environ. Sci. 2, 181, 2009, Invited review article

  20. Role of pores Role of pores 2.5 a) 2.5 30 20 10 5 2 1 2.0 0.07 V 1.1 V a ) 2.0 I 1 5 1.5 1.5 V /V V /V 2.0 2.2 2.4 2.6 2.8 3.0 1.0 1.0 2  /degree Sn 2 P 2 O 7 0.5 0.5 0.0 30 20 10 5 2 1 3.75 b ) b) 2.0 3.70 1.5 V /V V /V 1.0 mesoporous/Sn 2 P 2 O 7 d /nm 3.65 0.5 0.0 3.60 3.60 0 0 200 200 400 400 600 600 800 800 1000 1000 1200 1200 -1 x /mAhg 3.55 0 400 800 1200 1600 -1 x /mAhg x /mAhg Charge Discharge Angew. Chem. Int. Ed. 43, 5987 (2004)

  21. Approaches Hollow 0D Nanoparticle assembly SiO 2 :CnHm-Metal gels = 7:3 (wt%) Δ & etching SiO 2 template Δ & etching Porous 3D Nanoparicle SiO 2 :CnHm-Metal assembly assembly gels = 3:7 (wt%) gels = 3:7 (wt%)

  22. Si precursor Annealing Annealing Et hi Etching SBA-15 Mesoporous nanowires * A Annealing li Etching Al 2 O 3 membrane template Nanotubes *Nano Lett. 8, 3688 (2008)

  23. 0D & 3D Ge porous particles* (a) silica template, (b) 0D hollow Ge nanoparticle assembly, (c) 3D porous Ge nanoparticle assembly, (d) is expanded image of (c), (e and f) high resolution TEM i image and Raman spectrum d R t * Adv. Mater. 22, 415, 2010

  24. 0D & 3D Ge porous particles – cycling result 5000 0D Hollow Ge 3D Porous Ge 2500 V(mAh/gV) 0 dQ/dV -2500 -5000 0.0 0.2 0.4 0.6 0.8 1.0 1.2 Potential(V)

  25. 3D Porous Si Particles After etching After etching Before etching Before etching *Angew. Chem. Int. Ed., 47, 10151 (2008) (HOT article)

  26. Cycling results 3.0 (a) 2.5 2.5 2.0 2 3 1 0.2 C rate = metal) 1.5 Ex situ TEM 1.0 V) (vs. Lithium 0.5 0.0 3.0 (b) (b) ll Potential (V 2.5 C rate = 0.2 2.0 100,70,30,1 1.5 1 0 1.0 Ce 0.5 0.0 0 500 1000 1500 2000 2500 3000 3500 Capacity (mAh/g) Capacity (mAh/g) 2800 (c) 0.2 C rate (400 mA/g) 2400 1C rate (2000 mA/g) 2000 1600 1200 1200 0 20 40 60 80 100 Cycle number

  27. Si nanotubes After ultrasonic treatment After ultrasonic treatment *Nano Lett. 9, 3844, 2009 Highlighted in Nature Nanotech., Nature Mater. in Asia & MIT Technical Review

  28. Si nanotubes- Half and full cell tests (a) (c) (c) (d) (d) (b)

  29. Si nanotubes- Ex-situ TEM

Recommend


More recommend