surface representations
play

Surface Representations Leif Kobbelt RWTH Aachen University 1 - PowerPoint PPT Presentation


  1. ��������� ��� ��������� ���� ������� �������������� ��� ���������� ��������� ������� ��������� ��� ����� ������� �������� �� ������� ������� �������� ��� ��������������� �������� ������� �� ����������� ��� ����������� ������ ����� ���� ��� ���������� ���������� ���������������� Surface Representations Leif Kobbelt RWTH Aachen University 1

  2. Outline • (mathematical) geometry representations – parametric vs. implicit • approximation properties • types of operations – distance queries – evaluation – modification / deformation • data structures Leif Kobbelt RWTH Aachen University 2 2

  3. Outline • (mathematical) geometry representations – parametric vs. implicit • approximation properties • types of operations – distance queries – evaluation – modification / deformation • data structures Leif Kobbelt RWTH Aachen University 3 3

  4. Mathematical Representations • parametric – range of a function – surface patch f : R 2 → R 3 , S Ω = f (Ω) • implicit – kernel of a function – level set F : R 3 → R, S c = { p : F ( p ) = c } Leif Kobbelt RWTH Aachen University 4 4

  5. 2D-Example: Circle • parametric � r cos( t ) � f : t �→ S = f ([0 , 2 π ]) , r sin( t ) • implicit F ( x, y ) = x 2 + y 2 − r 2 S = { ( x, y ) : F ( x, y ) = 0 } Leif Kobbelt RWTH Aachen University 5 5

  6. 2D-Example: Island • parametric � r cos( t ) � ??? f : t �→ S = f ([0 , 2 π ]) , r sin( t ) ??? • implicit F ( x, y ) = x 2 + y 2 − r 2 ??? S = { ( x, y ) : F ( x, y ) = 0 } Leif Kobbelt RWTH Aachen University 6 6

  7. Approximation Quality • piecewise parametric � r cos( t ) � ??? f : t �→ S = f ([0 , 2 π ]) , r sin( t ) ??? • piecewise implicit F ( x, y ) = x 2 + y 2 − r 2 ??? S = { ( x, y ) : F ( x, y ) = 0 } Leif Kobbelt RWTH Aachen University 7 7

  8. Approximation Quality • piecewise parametric � r cos( t ) � ??? f : t �→ S = f ([0 , 2 π ]) , r sin( t ) ??? • piecewise implicit F ( x, y ) = x 2 + y 2 − r 2 ??? S = { ( x, y ) : F ( x, y ) = 0 } Leif Kobbelt RWTH Aachen University 8 8

  9. Requirements / Properties • continuity f ( u i , v i ) ≈ p i – interpolation / approximation • topological consistency – manifold-ness • smoothness – C 0 , C 1 , C 2 , ... C k • fairness – curvature distribution Leif Kobbelt RWTH Aachen University 9 9

  10. Requirements / Properties • continuity f ( u i , v i ) ≈ p i – interpolation / approximation • topological consistency – manifold-ness • smoothness – C 0 , C 1 , C 2 , ... C k • fairness – curvature distribution Leif Kobbelt RWTH Aachen University 10 10

  11. Requirements / Properties • continuity f ( u i , v i ) ≈ p i – interpolation / approximation • topological consistency – manifold-ness • smoothness – C 0 , C 1 , C 2 , ... C k • fairness – curvature distribution Leif Kobbelt RWTH Aachen University 11 11

  12. Requirements / Properties • continuity f ( u i , v i ) ≈ p i – interpolation / approximation • topological consistency – manifold-ness • smoothness – C 0 , C 1 , C 2 , ... C k • fairness – curvature distribution Leif Kobbelt RWTH Aachen University 12 12

  13. Requirements / Properties • continuity f ( u i , v i ) ≈ p i – interpolation / approximation • topological consistency – manifold-ness • smoothness – C 0 , C 1 , C 2 , ... C k • fairness – curvature distribution Leif Kobbelt RWTH Aachen University 13 13

  14. Topological Consistency Leif Kobbelt RWTH Aachen University 14 14

  15. Topological Consistency Leif Kobbelt RWTH Aachen University 14 14

  16. Topological Consistency Mesh Repair ... Leif Kobbelt RWTH Aachen University 14 14

  17. Closed 2-Manifolds • parametric – disk-shaped neighborhoods f ( D ε [ u, v ]) = D δ [ f ( u, v )] – + injectivity • implicit – surface of a “physical” solid F ( x, y, z ) = c, �∇ F ( x, y, z ) � � = 0 – Leif Kobbelt RWTH Aachen University 15 15

  18. Closed 2-Manifolds • parametric – disk-shaped neighborhoods f ( D ε [ u, v ]) = D δ [ f ( u, v )] – + injectivity • implicit – surface of a “physical” solid F ( x, y, z ) = c, �∇ F ( x, y, z ) � � = 0 – Leif Kobbelt RWTH Aachen University 16 16

  19. Closed 2-Manifolds • parametric – disk-shaped neighborhoods f ( D ε [ u, v ]) = D δ [ f ( u, v )] – + injectivity • implicit – surface of a “physical” solid F ( x, y, z ) = c, �∇ F ( x, y, z ) � � = 0 – Leif Kobbelt RWTH Aachen University 17 17

  20. Closed 2-Manifolds • parametric – disk-shaped neighborhoods f ( D ε [ u, v ]) = D δ [ f ( u, v )] – • implicit – surface of a “physical” solid F ( x, y, z ) = c, �∇ F ( x, y, z ) � � = 0 – Leif Kobbelt RWTH Aachen University 18 18

  21. Closed 2-Manifolds • parametric – disk-shaped neighborhoods f ( D ε [ u, v ]) = D δ [ f ( u, v )] – • implicit – surface of a “physical” solid F ( x, y, z ) = c, �∇ F ( x, y, z ) � � = 0 – Leif Kobbelt RWTH Aachen University 19 19

  22. Smoothness • position continuity : C 0 • tangent continuity : C 1 • curvature continuity : C 2 Leif Kobbelt RWTH Aachen University 20 20

  23. Smoothness • position continuity : C 0 • tangent continuity : C 1 • curvature continuity : C 2 Leif Kobbelt RWTH Aachen University 21 21

  24. Smoothness • position continuity : C 0 • tangent continuity : C 1 • curvature continuity : C 2 Leif Kobbelt RWTH Aachen University 22 22

  25. Fairness • minimum surface area • minimum curvature • minimum curvature variation Leif Kobbelt RWTH Aachen University 23 23

  26. Outline • (mathematical) geometry representations – parametric vs. implicit • approximation properties • types of operations – distance queries – evaluation – modification / deformation • data structures Leif Kobbelt RWTH Aachen University 24 24

  27. Polynomials • computable functions p p c i t i = � � c � p ( t ) = i Φ i ( t ) i =0 i =0 • Taylor expansion p 1 i ! f ( i ) (0) h i + O ( h p +1 ) � f ( h ) = i =0 • interpolation error (mean value theorem) p ( t i ) = f ( t i ) , t i ∈ [0 , h ] p 1 � ( p + 1)! f ( p +1) ( t ∗ ) ( t − t i ) = O ( h ( p +1) ) � f ( t ) − p ( t ) � = i =0 Leif Kobbelt RWTH Aachen University 25 25

  28. Polynomials • computable functions p p c i t i = � � c � p ( t ) = i Φ i ( t ) i =0 i =0 • Taylor expansion p 1 i ! f ( i ) (0) h i + O ( h p +1 ) � f ( h ) = i =0 • interpolation error (mean value theorem) p ( t i ) = f ( t i ) , t i ∈ [0 , h ] p 1 � ( p + 1)! f ( p +1) ( t ∗ ) ( t − t i ) = O ( h ( p +1) ) � f ( t ) − p ( t ) � = i =0 Leif Kobbelt RWTH Aachen University 26 26

  29. Polynomials • computable functions p p c i t i = � � c � p ( t ) = i Φ i ( t ) i =0 i =0 • Taylor expansion p 1 i ! f ( i ) (0) h i + O ( h p +1 ) � f ( h ) = i =0 • interpolation error (mean value theorem) p ( t i ) = f ( t i ) , t i ∈ [0 , h ] p 1 ( p + 1)! f ( p +1) ( t ∗ ) � ( t − t i ) = O ( h ( p +1) ) � f ( t ) − p ( t ) � = i =0 Leif Kobbelt RWTH Aachen University 27 27

  30. Implicit Polynomials • interpolation error of the function values � F ( x, y, z ) − P ( x, y, z ) � = O ( h ( p +1) ) • approximation error of the contour F ( p + � p ) − F ( p ) � p = λ ∇ F ( p ) ≈ �∇ F ( p ) � �� p � Leif Kobbelt RWTH Aachen University 28 28

  31. Implicit Polynomials • interpolation error of the function values � F ( x, y, z ) − P ( x, y, z ) � = O ( h ( p +1) ) p p+ Δ p • approximation error of the contour F ( p + � p ) − F ( p ) � p = λ ∇ F ( p ) ≈ �∇ F ( p ) � �� p � Leif Kobbelt RWTH Aachen University 29 29

  32. Implicit Polynomials • interpolation error of the function values � F ( x, y, z ) − P ( x, y, z ) � = O ( h ( p +1) ) p p+ Δ p • approximation error of the contour �� p � ≈ F ( p + � p ) − F ( p ) � p = λ ∇ F ( p ) �∇ F ( p ) � (gradient bounded from below) Leif Kobbelt RWTH Aachen University 30 30

  33. Implicit Polynomials F(x,y,z) F(x,y,z) x,y,z x,y,z large small gradient gradient Leif Kobbelt RWTH Aachen University 31 31

  34. Polynomial Approximation • approximation error is O(h p+1 ) • improve approximation quality by – increasing p ... higher order polynomials – decreasing h ... smaller / more segments • issues – smoothness of the target data ( max t f (p+1) (t) ) – handling higher order patches (e.g. boundary conditions) Leif Kobbelt RWTH Aachen University 32 32

Recommend


More recommend