the method of frobenius
play

The Method of Frobenius Bernd Schr oder logo1 Bernd Schr oder - PowerPoint PPT Presentation

Overview An Example Double Check The Method of Frobenius Bernd Schr oder logo1 Bernd Schr oder Louisiana Tech University, College of Engineering and Science The Method of Frobenius Overview An Example Double Check What is the


  1. Overview An Example Double Check The Method of Frobenius Bernd Schr¨ oder logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science The Method of Frobenius

  2. Overview An Example Double Check What is the Method of Frobenius? logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science The Method of Frobenius

  3. Overview An Example Double Check What is the Method of Frobenius? 1. The method of Frobenius works for differential equations of the form y ′′ + P ( x ) y ′ + Q ( x ) y = 0 in which P or Q is not analytic at the point of expansion x 0 . logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science The Method of Frobenius

  4. Overview An Example Double Check What is the Method of Frobenius? 1. The method of Frobenius works for differential equations of the form y ′′ + P ( x ) y ′ + Q ( x ) y = 0 in which P or Q is not analytic at the point of expansion x 0 . 2. But P and Q cannot be arbitrary: ( x − x 0 ) P ( x ) and ( x − x 0 ) 2 Q ( x ) must be analytic at x 0 . logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science The Method of Frobenius

  5. Overview An Example Double Check What is the Method of Frobenius? 1. The method of Frobenius works for differential equations of the form y ′′ + P ( x ) y ′ + Q ( x ) y = 0 in which P or Q is not analytic at the point of expansion x 0 . 2. But P and Q cannot be arbitrary: ( x − x 0 ) P ( x ) and ( x − x 0 ) 2 Q ( x ) must be analytic at x 0 . ∞ c n ( x − x 0 ) n , we obtain a ∑ 3. Instead of a series solution y = n = 0 ∞ c n ( x − x 0 ) n + r . ∑ solution of the form y = n = 0 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science The Method of Frobenius

  6. Overview An Example Double Check What is the Method of Frobenius? 1. The method of Frobenius works for differential equations of the form y ′′ + P ( x ) y ′ + Q ( x ) y = 0 in which P or Q is not analytic at the point of expansion x 0 . 2. But P and Q cannot be arbitrary: ( x − x 0 ) P ( x ) and ( x − x 0 ) 2 Q ( x ) must be analytic at x 0 . ∞ c n ( x − x 0 ) n , we obtain a ∑ 3. Instead of a series solution y = n = 0 ∞ c n ( x − x 0 ) n + r . ∑ solution of the form y = n = 0 4. The method of Frobenius is guaranteed to produce one solution, but it may not produce two linearly independent solutions. logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science The Method of Frobenius

  7. Overview An Example Double Check What is the Method of Frobenius? logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science The Method of Frobenius

  8. Overview An Example Double Check What is the Method of Frobenius? 5. As for series solutions, we substitute the series and its derivatives into the equation to obtain an equation for r and a set of equations for the c n . logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science The Method of Frobenius

  9. Overview An Example Double Check What is the Method of Frobenius? 5. As for series solutions, we substitute the series and its derivatives into the equation to obtain an equation for r and a set of equations for the c n . 6. These equations will allow us to compute r and the c n . logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science The Method of Frobenius

  10. Overview An Example Double Check What is the Method of Frobenius? 5. As for series solutions, we substitute the series and its derivatives into the equation to obtain an equation for r and a set of equations for the c n . 6. These equations will allow us to compute r and the c n . 7. For each value of r (typically there are two), we can compute the solution just like for series. logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science The Method of Frobenius

  11. Overview An Example Double Check What is the Method of Frobenius? 5. As for series solutions, we substitute the series and its derivatives into the equation to obtain an equation for r and a set of equations for the c n . 6. These equations will allow us to compute r and the c n . 7. For each value of r (typically there are two), we can compute the solution just like for series. That’s it. logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science The Method of Frobenius

  12. Overview An Example Double Check Solve the Differential Equation 9 x 2 y ′′ + 3 x 2 y ′ + 2 y = 0 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science The Method of Frobenius

  13. Overview An Example Double Check Solve the Differential Equation 9 x 2 y ′′ + 3 x 2 y ′ + 2 y = 0 9 x 2 y ′′ + 3 x 2 y ′ + 2 y = 0 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science The Method of Frobenius

  14. Overview An Example Double Check Solve the Differential Equation 9 x 2 y ′′ + 3 x 2 y ′ + 2 y = 0 9 x 2 y ′′ + 3 x 2 y ′ + 2 y = 0 � ′′ � ′ � � � � ∞ ∞ ∞ c n x n + r c n x n + r c n x n + r 9 x 2 ∑ + 3 x 2 ∑ ∑ + 2 = 0 n = 0 n = 0 n = 0 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science The Method of Frobenius

  15. Overview An Example Double Check Solve the Differential Equation 9 x 2 y ′′ + 3 x 2 y ′ + 2 y = 0 9 x 2 y ′′ + 3 x 2 y ′ + 2 y = 0 � ′′ � ′ � � ∞ ∞ ∞ c n x n + r c n x n + r c n x n + r 9 x 2 ∑ + 3 x 2 ∑ ∑ + 2 = 0 n = 0 n = 0 n = 0 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science The Method of Frobenius

  16. Overview An Example Double Check Solve the Differential Equation 9 x 2 y ′′ + 3 x 2 y ′ + 2 y = 0 9 x 2 y ′′ + 3 x 2 y ′ + 2 y = 0 � ′′ � ∞ ∞ ∞ c n ( n + r ) x n + r − 1 + 2 c n x n + r c n x n + r 9 x 2 ∑ + 3 x 2 ∑ ∑ = 0 n = 0 n = 0 n = 0 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science The Method of Frobenius

  17. Overview An Example Double Check Solve the Differential Equation 9 x 2 y ′′ + 3 x 2 y ′ + 2 y = 0 9 x 2 y ′′ + 3 x 2 y ′ + 2 y = 0 ∞ ∞ ∞ c n ( n + r )( n + r − 1 ) x n + r − 2 + 3 x 2 c n ( n + r ) x n + r − 1 + 2 c n x n + r 9 x 2 ∑ ∑ ∑ = 0 n = 0 n = 0 n = 0 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science The Method of Frobenius

  18. Overview An Example Double Check Solve the Differential Equation 9 x 2 y ′′ + 3 x 2 y ′ + 2 y = 0 9 x 2 y ′′ + 3 x 2 y ′ + 2 y = 0 ∞ ∞ ∞ c n ( n + r )( n + r − 1 ) x n + r − 2 + 3 x 2 c n ( n + r ) x n + r − 1 + 2 c n x n + r 9 x 2 ∑ ∑ ∑ = 0 n = 0 n = 0 n = 0 ∞ ∞ ∞ 9 ( n + r )( n + r − 1 ) c n x n + r + 3 ( n + r ) c n x n + r + 1 + 2 c n x n + r ∑ ∑ ∑ = 0 n = 0 n = 0 n = 0 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science The Method of Frobenius

  19. Overview An Example Double Check Solve the Differential Equation 9 x 2 y ′′ + 3 x 2 y ′ + 2 y = 0 9 x 2 y ′′ + 3 x 2 y ′ + 2 y = 0 ∞ ∞ ∞ c n ( n + r )( n + r − 1 ) x n + r − 2 + 3 x 2 c n ( n + r ) x n + r − 1 + 2 c n x n + r 9 x 2 ∑ ∑ ∑ = 0 n = 0 n = 0 n = 0 ∞ ∞ ∞ 9 ( n + r )( n + r − 1 ) c n x n + r + 3 ( n + r ) c n x n + r + 1 + 2 c n x n + r ∑ ∑ ∑ = 0 n = 0 n = 0 n = 0 ∞ ∞ ∞ 9 ( k + r )( k + r − 1 ) c k x k + r + 3 ( k + r − 1 ) c k − 1 x k + r + 2 c k x k + r ∑ ∑ ∑ = 0 k = 0 k = 1 k = 0 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science The Method of Frobenius

  20. Overview An Example Double Check Solve the Differential Equation 9 x 2 y ′′ + 3 x 2 y ′ + 2 y = 0 9 x 2 y ′′ + 3 x 2 y ′ + 2 y = 0 ∞ ∞ ∞ c n ( n + r )( n + r − 1 ) x n + r − 2 + 3 x 2 c n ( n + r ) x n + r − 1 + 2 c n x n + r 9 x 2 ∑ ∑ ∑ = 0 n = 0 n = 0 n = 0 ∞ ∞ ∞ 9 ( n + r )( n + r − 1 ) c n x n + r + 3 ( n + r ) c n x n + r + 1 + 2 c n x n + r ∑ ∑ ∑ = 0 n = 0 n = 0 n = 0 ∞ ∞ ∞ 9 ( k + r )( k + r − 1 ) c k x k + r + 3 ( k + r − 1 ) c k − 1 x k + r + 2 c k x k + r ∑ ∑ ∑ = 0 k = 0 k = 1 k = 0 ∞ x k + r c 0 x r + ∑ � � � � 9 r ( r − 1 )+ 2 9 ( k + r )( k + r − 1 ) c k + 3 ( k + r − 1 ) c k − 1 + 2 c k = 0 k = 1 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science The Method of Frobenius

  21. Overview An Example Double Check Solve the Differential Equation 9 x 2 y ′′ + 3 x 2 y ′ + 2 y = 0 Indicial equation: � � 9 r ( r − 1 )+ 2 = c 0 0 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science The Method of Frobenius

  22. Overview An Example Double Check Solve the Differential Equation 9 x 2 y ′′ + 3 x 2 y ′ + 2 y = 0 Indicial equation: � � 9 r ( r − 1 )+ 2 = c 0 0 9 r ( r − 1 )+ 2 = 0 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science The Method of Frobenius

Recommend


More recommend