supersymmetry lhc dark matter and the scale of new physics
play

Supersymmetry: LHC, Dark Matter, and the Scale of New Physics - PowerPoint PPT Presentation

Supersymmetry: LHC, Dark Matter, and the Scale of New Physics Daniel Feldman SUSY 2011, Fermilab Todays 30 minutes... SUGRA, LHC, DM and SIGNATURES EWSB in SUGRA and STRINGS ORIGIN OF DARK FORCES, HIDDEN SECTOR DM and SUSY


  1. Supersymmetry: LHC, Dark Matter, and the Scale of New Physics Daniel Feldman SUSY 2011, Fermilab

  2. Today’s 30 minutes... SUGRA, LHC, DM and SIGNATURES EWSB in SUGRA and STRINGS ORIGIN OF DARK FORCES, HIDDEN SECTOR DM and SUSY PAMELA/FERMI/XENON SUSY and the LHC

  3. SUGRA Naturally incorporate gravity via the gauging of global SUSY Mass generation for super-partners via super-Higgs breaking SUSY Paradigm Unification of gauge couplings manifest Dynamic triggering of spontaneous electroweak symm. breaking through RGE Dark matter candidate consistent with R-parity Predictive - unification scale boundary cond. determine TeV scale phenomena Testable - colliders and flavor physics, dark matter scattering and annihilation + ... Basis for contact with string theory (determine W, K, f) - string phenomenology Break Super-Symmetry Break EW-Symmetry Large Hadron Collider M ) = e G � � G M K M ¯ N G ¯ → q ∗ gg g � � g, q i � � j , V ( φ M , φ ∗ N − 3 + V D 600 S.P. M. → stable or metastable dS vacuum gq g � � q i , M ) + log | W ( φ M ) | 2 G ( φ M , φ ∗ M ) = K ( φ M , φ ∗ → q ∗ 500 qq g � � g, q i � � j , H d + . . . 2 +m 0 2 ) 1/2 ( µ → qq q i � � q j , H u Mass [GeV] 400 Super Higgs: Gravitino becomes massive : SUSY ud → � � � i � N i � � C + C + → C − , N j , d qq j , N j , u 1 i λ a + h.c. ) − m 2 C ∗ α � 2( M a � λ a � α � C α 300 M 3 L soft � � = � � ud → � � + � i � � + M 2 ν � L � � m 1/2 → � − ν ∗ qq j , ν � � � � 1 � � M 1 C α � C β � C γ + B � 6 A αβγ � Y αβγ � µ � H 1 � 200 H 2 + h.c. − squarks N 1 q → ˜ ˜ DM within Earth where C α = Q L , u c N 1 q L , d c L , L L , e c L , H 1 , H 2 , 100 m 0 sleptons DM in the Galaxy N 1 ˜ ˜ N 1 → SM SM ′ � DM evolution in the Universe Ω h 2 0 W = ˆ � [ Y u ( h m ) Q L H 2 u c W ( h m ) µ ( h m ) H 1 H 2 + 2 4 6 8 10 12 14 16 18 L Log 10 (Q/1 GeV) gen + Y d ( h m ) Q L H 1 d c L + Y e ( h m ) L L H 1 e c L ]

  4. Results From the EPS 2011 Meeting (see also talks ~ today) R − odd ( ˜ g . . . ) q˜ q , ˜ q˜ g , ˜ g˜ R − even ( Φ = ( h , H , A )) mSUGRA MSUGRA/CMSSM: tan = 10, A = 0, >0 ! ! 0 -1 CMS Preliminary 2011 1.1 fb [GeV] ATLAS Preliminary 0 lepton 2011 combined 0 lepton 2011 combined int -1 60 L = 1.04 fb , s =7 TeV CL observed 95% C.L. limit s # " LEP2 " CL median expected limit 600 s 1 1/2 ~ ~ Simone Gennai (CERN/INFN) -1 D0 g , q , tan =3, <0, 2.1 fb exp. limit 68%, 99% CL ! ! on behalf of the CMS Collaboration m ~ ~ -1 CDF g , q , tan =5, <0, 2 fb Reference point ! ! 50 Theoretically excluded 2010 data PCL 95% C.L. limit I.Vivarelli - Albert Ludwigs Universität, Freiburg 500 On behalf of the ATLAS collaboration ~ q 40 ( 1 4 ~ g (1200) 0 0 ) � 400 95% CL excluded regions tan 30 CMS observed ~ g (1000) ~ q ± 1 � theory (1000) CMS expected 20 300 -1 D0 7.3 fb ~ g (800) LEP CMS 2010 observed ~ q ( 10 6 0 CMS 2010 expected ~ 200 0 ~ ) g (600) max MSSM m scenario, M = 1 TeV h SUSY 0 100 150 200 250 300 350 400 450 500 m [GeV] 500 1000 1500 2000 2500 3000 3500 A m [GeV] 0 LHC 2011 Constraint on gluino ˜ g is significantly weaker than the constraint on ˜ q q 3 is significantly weaker ( in particular ˜ t ) Constraint on ˜ = Low M A ∼ M H now highly constrained big impact on dark matter searches - Some of these constraints may be clear from theoretical considerations with the gaugino sector sub-TeV to order TeV. - Viable parameter is LARGE , even in the minimal model of soft breaking (which is minimal SUGRA) and LARGER in extensions.

  5. vast parameter space Akula, Peim, Chen, Liu, Nath, DF 1103.1197, PLB

  6. vast parameter space Sven Heinemeyer’s talk See talk with W. de Boer et al see: Allanach, Khoo, Lester, Williams http://www.ep.ph.bham.ac.uk/general/seminars/slides/ben-allanach.pdf

  7. Within the vast parameter space of SUSY models there is generally a Large Landscape of Mass Hierarchies Sparticle Mass Hierarchies , along with scale and mass splittings dictate what types of sparticles can decay into one another and can significantly alter signatures of new physics at the LHC. What are the collection of the possible ways the masses can stack up ? Scanning over the Landscape of mass configurations, what does this imply for the LHC ? Dark Matter ? Mass Hierarchical Patterns “Sparticle Landscape” D. Feldman, Z. Liu, P. Nath sugra, nusugra, and strings (PRL 2007), (PLB 2008, JHEP 2008) J. Hewett, J. Gainer, T. Rizzo, et al pmssm (JHEP 2009) D. Nanopoulos, J. Maxin, V. Mayes sugra and strings (PRD 2009) K. Matchev, P. Konar, M. Park, G. Sarangi mssm (PRL 2010) L. Everett, B. Nelson, I. Kim, B. Altunkaynak , Y. Rao sugra, mirage (arXiv:1011.1439) P. Langacke r PRL viewpoint G. Peim, N. Chen, et al nusugra (PRD 2011) For a review see: arXiv:0908.3727

  8. Sparticle Mass Hierarchies Feldman, Liu, Nath: Phys. Rev. Letters 99: 251802, (2007) Phys.Lett.B662:190-198, (2008), JHEP 0804, 054 (2008) mSP µ Mass Pattern NUSP Mass Pattern Model χ 0 < e χ ± χ 0 < e χ ± χ 0 χ 0 χ 0 2 < e e 1 < e 2 < e µ ± e 1 < e t 1 mSP1 NUSP1 NU3,NUG 3 χ 0 < e χ ± χ 0 < e χ ± χ 0 e 1 < e 2 < A/H µ ± e 1 < A ∼ H mSP2 NUSP2 NU3 χ 0 < e χ 0 < e χ ± χ ± χ 0 χ 0 e 1 < e 2 < e µ ± e 1 < e τ 1 < e mSP3 NUSP3 NUG τ 1 2 χ 0 < e χ 0 < e χ ± χ ± χ 0 τ 1 < e e 1 < e 2 < ˜ g µ ± e 1 < e l R mSP4 NUSP4 NUG χ 0 < e χ 0 < e τ 1 < e e l R < e µ ± NUSP5 e τ 1 < e ν τ < e NU3 mSP5 ν τ τ 2 χ 0 < e χ 0 < e χ ± χ ± χ 0 τ 1 < e ν τ < e mSP6 e τ 1 < e 1 < e µ ± NUSP6 e NU3 2 1 χ 0 < e χ 0 < e χ ± τ 1 < e τ 1 < e e t 1 < A/H NUSP7 NUG mSP7 e l R < e µ ± 1 χ 0 < e χ 0 < e τ 1 < e NUSP8 e l R < e NUG mSP8 e τ 1 < A ∼ H µ ± ν µ χ 0 < e χ ± χ 0 < e 1 < e τ 1 < e τ 1 < e l R l R < A/H µ ± NUSP9 e NUG mSP9 e χ 0 < e χ 0 < e χ ± t 1 < e τ 1 < e e l R µ + mSP10 t 1 < ˜ g < e NUSP10 e NUG 1 χ 0 < e χ ± χ 0 < e χ 0 t 1 < e 1 < e µ ± e t 1 < A ∼ H mSP11 e NUSP11 NUG 2 χ 0 < A ∼ H < ˜ χ 0 < e χ ± g t 1 < e τ 1 < e µ ± NUSP12 e NUG mSP12 e 1 χ 0 < e χ 0 < ˜ χ ± τ 1 < e χ 0 mSP13 e t 1 < e l R µ ± NUSP13 e g < e 1 < e NUG 2 χ 0 < A ∼ H < H ± χ 0 < ˜ χ ± g < e µ + mSP14 e NUSP14 e t 1 < e NUG 1 χ 0 < A ∼ H < e χ 0 < ˜ χ ± mSP15 e µ + NUSP15 e g < A ∼ H NUG 1 χ 0 < A ∼ H < e χ 0 < e mSP16 e µ + DBSP1 e τ 1 < e ν τ < A/H DB τ 1 χ 0 < e χ 0 < e χ ± ν τ < e χ 0 DBSP2 e τ 1 < e l R DB e τ 1 < e 2 < e µ − mSP17 1 χ 0 < e χ 0 < e τ 1 < e l R < e e τ 1 < e ν τ < e DBSP3 DB t 1 µ − mSP18 e ν µ χ 0 < e χ 0 < e χ ± t 1 < e τ 1 < e DBSP4 e DB τ 1 < e mSP19 e t 1 < e µ − ν τ 1 χ 0 < e χ 0 < e χ ± DBSP5 e ν τ < e τ 1 < e DB χ 0 ν µ t 1 < e 2 < e µ − mSP20 e 1 χ 0 < e χ ± χ 0 < e ν τ < e τ 1 < e DBSP6 e DB χ 0 t 1 < e τ 1 < e µ − mSP21 e 1 2 χ 0 < e χ ± χ 0 mSP22 e 2 < e 1 < ˜ g µ − Table: New patterns in NUSUGRA ; no Table: The Sparticle Landscape of new patterns seen in NUH. Mass Hierarchies in mSUGRA. NUG - non-universal gauginos Can we map out the entire landscape? Intensive ... NUH - non-universal Higgses NU3 - non-universal 3rd gen squarks Larger sugra par. space searches should reveal even more. However, one really needs to understand the mapping of the mass hierarchies into LHC and Dark Matter Signatures

Recommend


More recommend