Many-particle entanglement criterion for superradiant-like states Mehmet Emre Tasgin
Outline β’ Relation among i. single-mode nonclassicality ii. two-mode entanglement iii. many-particle entanglement β’ new N-particle entanglement criterion i. test for Dicke states ii. test for the ground state Dicke Hamilonian (superradiance) iii. test for single-photon superradiance (exact, time depndt) iv. test for random superposition of Dicke states v. ground state of an interacting BEC
3 kind of nonclassicalities (i) single-mode nonclassicality (ii) two-mode entanglement (iii) many-particle inseperability
(i) single-mode nonclassicality quadrature witnessed by squeezed states (i) single-mode nonclassicality anti-bunching Fock-like (number-like) states Mandel Q < 0 photon number witnessed by squeezed states works fine for superposition of Fock-states
(ii) two-mode entanglement two-mode witnessed by [1-3] squeezed states DGCZ and SPH (ii) two-mode entanglement inseparable witnessed by number state H&Z criterion [4] works fine for superposition of number-states [1] Lu-Ming Duan, G. Giedke, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 84 , 2722 (2000). [2] R. Simon, Phys. Rev. Lett. 84 , 2726 (2000). [3] Stefano Mancini, Vittorio Giovannetti, David Vitali, and Paolo Tombesi, Phys. Rev. Lett. 88 , 120401 (2002). [4] M. Hillery and M. S. Zubairy, Phys. Rev. Lett. 96 , 050503 (2006).
(iii) many-particle inseparability spin-squeezed witnessed [7] states by [7] [5] [6] (iii) many-particle inspeperability Dicke states superpositions π πππ ? ? ? (number-like) of Dicke states ?? eg. superradiant states? Duan [8] Duan [8] [5] Kitagawa, M. & Ueda, M. Squeezed spin states. Phys. Rev. A 47 , 5138 (1993). [6] M. E. Tasgin and P. Meystre, βSpin sqz with coherent light via ent. swapping ,β Phys. Rev. A 83 , 053848 (2011). [7] A. SΓΈrensen , L.-M. Duan, J. I. Cirac, and P. Zoller, Nature (London) 409, 63 (2001). [8] L-M Duan , β Entanglmnt detection in the vicinity of arbitrary Dicke states,β Phys. Rev. Lett. 107 , 180502 (2011).
a question in place Atomic coherent states (ACS) separable many-particle states operate generates many-particle entanglement operate cannot generate entanglement WHY CANNOT ??? (we will answer soon) operate generates two-mode entanglement operate cannot generate two-mode entanglement beam-splitter Hmlt [6] M. E. Tasgin and P. Meystre, βSpin sqz with coherent light via ent. swapping ,β Phys. Rev. A 83 , 053848 (2011).
single-mode noncls. & two-mode entangle. relation: beam-splitter (BS) π π π π π 1 & π 2 are entangled β only if β π 1 is single-mode nonclassical [9] π π single-mode use π 1 & π 2 obtain nonclassicality criteria entanglement criteria for π 1 [9] M. S. Kim, W. Son, V. BuΛzek, and P. L. Knight, β Entanglement by a beam splitter: Nonclassicality as a prerequisite for entanglement ,β Phys. Rev. A 65, 032323 (2002 ).
single-mode noncls. & two-mode entangle. relation: beam-splitter (BS) π π π π π 1 & π 2 are entangled β only if β π 1 is single-mode nonclassicaly [9] π π quadrature squeezing criterion DGCZ criterion implies H&Z criterion number squeezing criterion implies [10] Mark Hillery and M Suhail Zubairy, Phys. Rev. A 74 , 032333 (2006). [11] M.E. Tasgin, arXiv:1502.00992v1. [12] M.E. Tasgin , arXiv:1502.00988v1
single-mode noncls. & two-mode entangle. relation: single-mode single-mode two-mode two-mode quadrature number sqz H&Z B.S. DGCZ B.S. squeezing criterion criterion criterion criterion [10] Mark Hillery and M Suhail Zubairy, Phys. Rev. A 74 , 032333 (2006). [11] M.E. Tasgin, arXiv:1502.00992v1. [12] M.E. Tasgin , arXiv:1502.00988v1
single-mode noncls. & many-particle entangl. relation: separable ACS= πΆ β β [13,14] coherent states of light |π·βͺ [13] JM Radcliffe , β Some properties of coherent spin states ,β Journal of Physics A: General Physics 4, 313 (1971). [14] JR Klauder and Bo-Sture Skagerstam, βApplications in physics and mathematical physics ,β World Scientific, Singapore (1985).
single-mode noncls. & many-particle entangl. relation: separable ACS= πΆ β β [13,14] coherent states πΆ β β πΆ β β of light |π·βͺ [13] JM Radcliffe , β Some properties of coherent spin states ,β Journal of Physics A: General Physics 4, 313 (1971). [14] JR Klauder and Bo-Sture Skagerstam, βApplications in physics and mathematical physics ,β World Scientific, Singapore (1985).
single-mode noncls. & many-particle entangl. relation: separable ACS= πΆ β β [13,14] coherent states πΆ β β πΆ β β of light |π·βͺ if π β 1 β |π π βͺ inseparable if π β 1 β |πβͺ single-mode nonclassical [13] JM Radcliffe , β Some properties of coherent spin states ,β Journal of Physics A: General Physics 4, 313 (1971). [14] JR Klauder and Bo-Sture Skagerstam, βApplications in physics and mathematical physics ,β World Scientific, Singapore (1985).
single-mode noncls. & many-particle entangl. relation: separable ACS= πΆ β β [13,14] coherent states πΆ β β πΆ β β of light |π·βͺ |π π βͺ inseparable if π β 1 β |π π βͺ inseparable if π β 1 β |πβͺ single-mode |πβͺ single-mode nonclassical nonclassical [13] JM Radcliffe , β Some properties of coherent spin states ,β Journal of Physics A: General Physics 4, 313 (1971). [14] JR Klauder and Bo-Sture Skagerstam, βApplications in physics and mathematical physics ,β World Scientific, Singapore (1985).
single-mode noncls. & many-particle entangl. relation: π π |πβͺ easier with operators π π |πβͺ use Holstein-Primakoff transformation β π + = π π π π β π π¨ = ( π π π π β π π π π )/2 β π β = π π π π [15] Clive Emary and Tobias Brandes , βChaos and the quantum phase transition in the dicke model,β Phys. Rev. E 67 , 066203 (2003).
single-mode noncls. & many-particle entangl. relation: π π |πβͺ easier with operators π π |πβͺ use Holstein-Primakoff transformation β π + = π π π π β π π¨ = ( π π π π β π π π π )/2 β π β = π π π π Holstein-Primakoff transformation [15] representable with a single operator π [15] Clive Emary and Tobias Brandes , βChaos and the quantum phase transition in the dicke model,β Phys. Rev. E 67 , 066203 (2003).
single-mode noncls. & many-particle entangl. relation: π π |πβͺ easier with operators π π |πβͺ use Holstein-Primakoff transformation β π + = π π π π β π π¨ = ( π π π π β π π π π )/2 β π β = π π π π πΆ β β πΆ β β Holstein-Primakoff transformation [15] representable with a single operator π [15] Clive Emary and Tobias Brandes , βChaos and the quantum phase transition in the dicke model,β Phys. Rev. E 67 , 066203 (2003).
single-mode noncls. & many-particle entangl. relation: Holstein-Primakoff transformation πΆ β β πΆ β β quadrature-squeezing spin-squeezing criterion criterion implies π β + π¦ = ( π)/β2 [12] [12] M.E. Tasgin , arXiv:1502.00988v1.
the big picture: (i) & (ii) & (iii) together single-mode single-mode two-mode two-mode quadrature number sqz H&Z B.S. DGCZ B.S. squeezing criterion criterion criterion criterion H.P. H.P. π πππ ??? spin-squeezing criterion criterion many-particle many-particle
the big picture: (i) & (ii) & (iii) together single-mode single-mode two-mode two-mode quadrature number sqz H&Z B.S. DGCZ B.S. squeezing criterion criterion criterion criterion H.P. H.P. πΆ β β π πππ ??? spin-squeezing πΆ β β criterion criterion many-particle many-particle π πππ ???
the big picture: (i) & (ii) & (iii) together single-mode single-mode two-mode two-mode quadrature number sqz H&Z B.S. DGCZ B.S. squeezing criterion criterion criterion criterion H.P. H.P. πΆ β β π πππ ??? spin-squeezing πΆ β β criterion criterion many-particle many-particle π πππ ??? π βͺ = β© π¬ π βͺ π βͺ try calculating β© π¬ π» + derived by calculating β© π¬ πΊ π» β π» π
new many-particle inseparability criterion: π πππ if separable single-mode two-mode number sqz H&Z B.S. criterion criterion H.P. π πππ ??? πΆ β β criterion many-particle many-particle inseparable π πππ ??? π βͺ = β© π¬ π βͺ try calculating β© π¬ π» + πΊ π» β
new many-particle inseparability criterion: π πππ single-mode single-mode two-mode two-mode quadrature number sqz H&Z B.S. DGCZ B.S. squeezing criterion criterion criterion criterion H.P. H.P. πΆ β β π πππ ??? spin-squeezing criterion criterion many-particle many-particle π βͺ = β© π¬ π βͺ π βͺ try calculating β© π¬ π» + derived by calculating β© π¬ πΊ π» β π» π
new many-particle inseparability criterion: π πππ
Recommend
More recommend