supernova neutrinos
play

Supernova Neutrinos Georg G. Raffelt Max-Planck-Institut fr Physik, - PowerPoint PPT Presentation

Crab Nebula Supernova Neutrinos Georg G. Raffelt Max-Planck-Institut fr Physik, Mnchen, Germany Georg Raffelt, MPI Physics, Munich ITN Invisibles, Training Lectures, GGI Florence, June 2012 Sanduleak -69 202 Sanduleak 69 202 Tarantula


  1. Crab Nebula Supernova Neutrinos Georg G. Raffelt Max-Planck-Institut für Physik, München, Germany Georg Raffelt, MPI Physics, Munich ITN Invisibles, Training Lectures, GGI Florence, June 2012

  2. Sanduleak -69 202 Sanduleak − 69 202 Tarantula Nebula Large Magellanic Cloud Distance 50 kpc (160.000 light years) Georg Raffelt, MPI Physics, Munich ITN Invisibles, Training Lectures, GGI Florence, June 2012

  3. Sanduleak -69 202 Sanduleak − 69 202 Supernova 1987A 23 February 1987 Tarantula Nebula Large Magellanic Cloud Distance 50 kpc (160.000 light years) Georg Raffelt, MPI Physics, Munich ITN Invisibles, Training Lectures, GGI Florence, June 2012

  4. Crab Nebula Georg Raffelt, MPI Physics, Munich ITN Invisibles, Training Lectures, GGI Florence, June 2012

  5. The Crab Pulsar Chandra x-ray images Georg Raffelt, MPI Physics, Munich ITN Invisibles, Training Lectures, GGI Florence, June 2012

  6. Supernova Remnant in Cas A (SN 1667?) Chandra x-ray image Non-pulsar compact remnant Georg Raffelt, MPI Physics, Munich ITN Invisibles, Training Lectures, GGI Florence, June 2012

  7. Baade and Zwicky Walter Baade (1893–1960) Fritz Zwicky (1898–1974) Baade and Zwicky were the first to speculate about a connection between supernova explosions and neutron-star formation [Phys. Rev. 45 (1934) 138] Georg Raffelt, MPI Physics, Munich ITN Invisibles, Training Lectures, GGI Florence, June 2012

  8. Stellar Collapse and Supernova Explosion Main-sequence star Helium-burning star Helium Hydrogen Hydrogen Burning Burning Burning Georg Raffelt, MPI Physics, Munich ITN Invisibles, Training Lectures, GGI Florence, June 2012

  9. Stellar Collapse and Supernova Explosion Onion structure Main-sequence star Collapse (implosion) Helium-burning star Degenerate iron core: ≈ 10 9 g cm − 3 ρ ρ ≈ T ≈ 10 10 K Helium Hydrogen Hydrogen Burning M Fe ≈ 1.5 M sun Burning Burning R Fe ≈ 3000 km Georg Raffelt, MPI Physics, Munich ITN Invisibles, Training Lectures, GGI Florence, June 2012

  10. Stellar Collapse and Supernova Explosion Newborn Neutron Star Collapse (implosion) Explosion Georg Raffelt, MPI Physics, Munich ITN Invisibles, Training Lectures, GGI Florence, June 2012

  11. Stellar Collapse and Supernova Explosion Newborn Neutron Star Neutrino cooling by diffusion Georg Raffelt, MPI Physics, Munich ITN Invisibles, Training Lectures, GGI Florence, June 2012

  12. Neutrino Signal of Supernova 1987A Kamiokande-II (Japan) Water Cherenkov detector 2140 tons Clock uncertainty ± 1 min Irvine-Michigan-Brookhaven (US) Water Cherenkov detector 6800 tons Clock uncertainty ± 50 ms Within clock uncertainties, all signals are contemporaneous Georg Raffelt, MPI Physics, Munich ITN Invisibles, Training Lectures, GGI Florence, June 2012

  13. Interpreting SN 1987A Neutrinos Contours at CL 68.3%, 90% and 95.4% Recent long-term simulations (Basel, Garching) Jegerlehner, Theory Neubig & Raffelt, PRD 54 (1996) 1194 Georg Raffelt, MPI Physics, Munich ITN Invisibles, Training Lectures, GGI Florence, June 2012

  14. Predicting Neutrinos from Core Collapse Phys. Rev. 58:1117 (1940) Georg Raffelt, MPI Physics, Munich ITN Invisibles, Training Lectures, GGI Florence, June 2012

  15. Flavor Oscillations Explosion Mechanism Georg Raffelt, MPI Physics, Munich ITN Invisibles, Training Lectures, GGI Florence, June 2012

  16. Why No Prompt Explosion? • 0.1 M sun of iron has a nuclear binding energy ≈ 1.7 × 10 51 erg • Comparable to explosion energy Dissociated Material (n, p, e, ν ) • Shock wave forms within the iron core • Dissipates its energy by dissociating the remaining layer of iron Georg Raffelt, MPI Physics, Munich ITN Invisibles, Training Lectures, GGI Florence, June 2012

  17. Neutrinos Rejuvenating Stalled Shock Neutrino heating increases pressure behind shock front Picture adapted from Janka, astro-ph/0008432 Georg Raffelt, MPI Physics, Munich ITN Invisibles, Training Lectures, GGI Florence, June 2012

  18. Delayed Explosion Wilson, Proc. Univ. Illinois Meeting on Num. Astrophys. (1982) Bethe & Wilson, ApJ 295 (1985) 14 Georg Raffelt, MPI Physics, Munich ITN Invisibles, Training Lectures, GGI Florence, June 2012

  19. Exploding Models (8–10 Solar Masses) Kitaura, Janka & Hillebrandt: “Explosions of O-Ne-Mg cores, the Crab supernova, and subluminous type II-P supernovae”, astro-ph/0512065 Georg Raffelt, MPI Physics, Munich ITN Invisibles, Training Lectures, GGI Florence, June 2012

  20. 3D Simulation (Garching group) Georg Raffelt, MPI Physics, Munich ITN Invisibles, Training Lectures, GGI Florence, June 2012

  21. Standing Accretion Shock Instability (SASI) Mezzacappa et al., http://www.phy.ornl.gov/tsi/pages/simulations.html Georg Raffelt, MPI Physics, Munich ITN Invisibles, Training Lectures, GGI Florence, June 2012

  22. Gravitational Waves from Core-Collapse Supernovae GWs from asymmetric neutrino emission GWs from convective mass flows Bounce Müller, Rampp, Buras, Janka, & Shoemaker, astro-ph/0309833 “Towards gravitational wave signals from realistic core collapse supernova models” Georg Raffelt, MPI Physics, Munich ITN Invisibles, Training Lectures, GGI Florence, June 2012

  23. Three Phases of Neutrino Emission Prompt ν e burst Accretion Cooling • Shock breakout Cooling on neutrino • De-leptonization of diffusion time scale outer core layers • Spherically symmetric model (10.8 M ⊙ ) with Boltzmann neutrino transport • Explosion manually triggered by enhanced CC interaction rate Fischer et al. (Basel group), A&A 517:A80, 2010 [arxiv:0908.1871] Georg Raffelt, MPI Physics, Munich ITN Invisibles, Training Lectures, GGI Florence, June 2012

  24. Flavor Oscillations Neutrinos from Next Nearby SN Georg Raffelt, MPI Physics, Munich ITN Invisibles, Training Lectures, GGI Florence, June 2012

  25. Operational Detectors for Supernova Neutrinos Super-K (10 4 ) MiniBooNE HALO LVD (400) Baksan (200) (tens) Borexino (100) (100) KamLAND (400) Daya Bay (100) In brackets events for a “fiducial SN” IceCube (10 6 ) at distance 10 kpc Georg Raffelt, MPI Physics, Munich ITN Invisibles, Training Lectures, GGI Florence, June 2012

  26. Super-Kamiokande Neutrino Detector Georg Raffelt, MPI Physics, Munich ITN Invisibles, Training Lectures, GGI Florence, June 2012

  27. Simulated Supernova Burst in Super-Kamiokande Movie by C. Little, including work by S. Farrell & B. Reed, (Kate Scholberg’s group at Duke University) http://snews.bnl.gov/snmovie.html Georg Raffelt, MPI Physics, Munich ITN Invisibles, Training Lectures, GGI Florence, June 2012

  28. IceCube as a Supernova Neutrino Detector Accretion SN signal at 10 kpc Cooling 10.8 M sun simulation of Basel group [arXiv:0908.1871] Pryor, Roos & Webster (ApJ 329:355, 1988), Halzen, Jacobsen & Zas (astro-ph/9512080) Georg Raffelt, MPI Physics, Munich ITN Invisibles, Training Lectures, GGI Florence, June 2012

  29. Variability seen in Neutrinos Luminosity Detection rate in IceCube Probably smaller in realistic 3D models Lund, Marek, Lunardini, Janka & Raffelt, arXiv:1006.1889 Using 2-D model of Marek, Janka & Müller, arXiv:0808.4136 Georg Raffelt, MPI Physics, Munich ITN Invisibles, Training Lectures, GGI Florence, June 2012

  30. Quark-Matter Phase Transition Signature in IceCube Dasgupta, Fischer, Horiuchi, Liebendörfer, Mirizzi, Sagert & Schaffner-Bielich arXiv:0912.2568 Georg Raffelt, MPI Physics, Munich ITN Invisibles, Training Lectures, GGI Florence, June 2012

  31. Next Generation Large-Scale Detector Concepts 5-100 kton liquid Argon DUSEL LBNE 100 kton scale scintillator Hyper-K Memphys LENA Megaton-scale HanoHano water Cherenkov Georg Raffelt, MPI Physics, Munich ITN Invisibles, Training Lectures, GGI Florence, June 2012

  32. SuperNova Early Warning System (SNEWS) Early light curve of SN 1987A http://snews.bnl.gov Super-K Coincidence IceCube • Neutrinos arrive several hours Alert Server before photons LVD @ BNL • Can alert astronomers several hours in advance Borexino Georg Raffelt, MPI Physics, Munich ITN Invisibles, Training Lectures, GGI Florence, June 2012

  33. Flavor Oscillations Supernova Rate Georg Raffelt, MPI Physics, Munich ITN Invisibles, Training Lectures, GGI Florence, June 2012

  34. Local Group of Galaxies With megatonne class (30 x SK) 60 events from Andromeda Current best neutrino detectors sensitive out to few 100 kpc Georg Raffelt, MPI Physics, Munich ITN Invisibles, Training Lectures, GGI Florence, June 2012

  35. Core-Collapse SN Rate in the Milky Way van den Bergh & McClure SN statistics in (1994) external galaxies Cappellaro&Turatto (2000) Gamma rays from Diehl et al. (2006) 26 Al (Milky Way) Strom (1994) Historical galactic SNe (all types) Tammann et al. (1994) No galactic 90 % CL (30 years) Alekseev et al. (1993) neutrino burst 7 8 0 1 2 3 4 5 6 9 10 Core-collapse SNe per century References: van den Bergh & McClure, ApJ 425 (1994) 205. Cappellaro & Turatto, astro-ph/0012455. Diehl et al., Nature 439 (2006) 45. Strom, Astron. Astrophys. 288 (1994) L1. Tammann et al., ApJ 92 (1994) 487. Alekseev et al., JETP 77 (1993) 339 and my update. Georg Raffelt, MPI Physics, Munich ITN Invisibles, Training Lectures, GGI Florence, June 2012

Recommend


More recommend