coherence of supernova neutrinos
play

Coherence of Supernova Neutrinos Jrn Kersten University of Hamburg - PowerPoint PPT Presentation

Coherence of Supernova Neutrinos Jrn Kersten University of Hamburg Based on work done in collaboration with A.Yu. Smirnov Jrn Kersten (Uni Hamburg) Coherence of Supernova Neutrinos 1 / 13 Neutrino Sources Jrn Kersten (Uni Hamburg)


  1. Coherence of Supernova Neutrinos Jörn Kersten University of Hamburg Based on work done in collaboration with A.Yu. Smirnov Jörn Kersten (Uni Hamburg) Coherence of Supernova Neutrinos 1 / 13

  2. Neutrino Sources Jörn Kersten (Uni Hamburg) Coherence of Supernova Neutrinos 2 / 13

  3. Neutrino Oscillations and Decoherence Normal (coherent) 2-flavor oscillation probability P ( ν e → ν e ) = | cos 2 θ + sin 2 θ e i φ | 2 = 1 − sin 2 2 θ sin 2 ∆ m 2 L 4 E Oscillation phase φ = − ∆ m 2 L 2 E Mass eigenstates have different velocities � Wave packets cease to overlap ν 1 ν 1 ν 2 ν 2 � Probability is incoherent sum P ( ν e → ν e ) = | cos 2 θ | 2 + | sin 2 θ e i φ | 2 = cos 4 θ + sin 4 θ � No oscillations between supernova and Earth Jörn Kersten (Uni Hamburg) Coherence of Supernova Neutrinos 3 / 13

  4. Observable Effects with Supernova Neutrinos Oscillations inside the Earth MSW and collective effects inside the supernova Initial neutrino and antineutrino fluxes Final fluxes in inverted hierarchy (single-angle) 1.0 1.0 ν e 0.8 0.8 ν Flux (a.u.) 0.6 0.6 x − → 0.4 0.4 ν ν x 0.2 0.2 e 0.0 0.0 0 10 20 30 40 50 0 10 20 30 40 50 E (MeV) E (MeV) Is coherence preserved in these cases? Jörn Kersten (Uni Hamburg) Coherence of Supernova Neutrinos 4 / 13

  5. Coherence Length of Supernova Neutrinos Wave packets overlap up to coherence length L coh ∼ σ ∆ v Depends on Size of wave packets σ Velocity difference ∆ v of mass eigenstates Jörn Kersten (Uni Hamburg) Coherence of Supernova Neutrinos 5 / 13

  6. Size of Wave Packets Determined by length of production process Electron capture pe − → n ν e Time scale ∼ time electron needs to cross proton, τ ∼ σ e / v e Temperature ∼ 5 MeV ⇒ electron relativistic, v e ∼ 1 Size of electron wave packet σ e ∼ mean free path Jörn Kersten (Uni Hamburg) Coherence of Supernova Neutrinos 6 / 13

  7. Size of Wave Packets Determined by length of production process Electron capture pe − → n ν e Time scale ∼ time electron needs to cross proton, τ ∼ σ e / v e Temperature ∼ 5 MeV ⇒ electron relativistic, v e ∼ 1 Size of electron wave packet σ e ∼ mean free path � − 1 / 3 ∼ 10 − 11 cm 4 πα 2 n � Result: σ ∼ σ e ∼ For comparison: Atmospheric neutrinos: σ ∼ 1 cm Reactor neutrinos: σ ∼ 10 − 8 cm σ E ∼ 1 /σ ∼ 1 MeV not much smaller than E ∼ 10 MeV Jörn Kersten (Uni Hamburg) Coherence of Supernova Neutrinos 6 / 13

  8. Coherence Length of Supernova Neutrinos Wave packets overlap up to coherence length L coh ∼ σ ∆ v Depends on Size of wave packets σ ∼ 10 − 11 cm Velocity difference ∆ v of mass eigenstates Jörn Kersten (Uni Hamburg) Coherence of Supernova Neutrinos 7 / 13

  9. Coherence Length of Supernova Neutrinos Wave packets overlap up to coherence length L coh ∼ σ ∆ v Depends on Size of wave packets σ ∼ 10 − 11 cm atm ∼ 10 − 3 eV 2 or ∆ m 2 Mass difference ∆ m 2 sol ∼ 10 − 5 eV 2 Neutrino energy E ∼ 10 MeV Jörn Kersten (Uni Hamburg) Coherence of Supernova Neutrinos 7 / 13

  10. Coherence Length of Supernova Neutrinos Wave packets overlap up to coherence length L coh ∼ σ ∆ v Depends on Size of wave packets σ ∼ 10 − 11 cm atm ∼ 10 − 3 eV 2 or ∆ m 2 Mass difference ∆ m 2 sol ∼ 10 − 5 eV 2 Neutrino energy E ∼ 10 MeV Matter density Mixing angle θ 13 ∼ 9 ◦ or θ 12 ∼ 30 ◦ Jörn Kersten (Uni Hamburg) Coherence of Supernova Neutrinos 7 / 13

  11. Coherence Length of Supernova Neutrinos Wave packets overlap up to coherence length L coh ∼ σ ∆ v Depends on Size of wave packets σ ∼ 10 − 11 cm atm ∼ 10 − 3 eV 2 or ∆ m 2 Mass difference ∆ m 2 sol ∼ 10 − 5 eV 2 Neutrino energy E ∼ 10 MeV Matter density Mixing angle θ 13 ∼ 9 ◦ or θ 12 ∼ 30 ◦ Supernova, inner region: L coh ∼ 100 km � length scale of collective effects Earth: L coh ∼ 1000 km Jörn Kersten (Uni Hamburg) Coherence of Supernova Neutrinos 7 / 13

  12. Coherence Length of Supernova Neutrinos Wave packets overlap up to coherence length L coh ∼ σ ∆ v Depends on Size of wave packets σ ∼ 10 − 11 cm atm ∼ 10 − 3 eV 2 or ∆ m 2 Mass difference ∆ m 2 sol ∼ 10 − 5 eV 2 Neutrino energy E ∼ 10 MeV Matter density Mixing angle θ 13 ∼ 9 ◦ or θ 12 ∼ 30 ◦ Supernova, inner region: L coh ∼ 100 km � length scale of collective effects Earth: L coh ∼ 1000 km Supernova neutrinos are special Very short wave packets � short coherence length Jörn Kersten (Uni Hamburg) Coherence of Supernova Neutrinos 7 / 13

  13. Sometimes Decoherence Is Irrelevant P ( ν e → ν e ) = | cos 2 θ + sin 2 θ e i φ | 2 = cos 4 θ + sin 4 θ + 2 cos 2 θ sin 2 θ cos φ Measured probability: average over energy resolution ∆ E of detector Jörn Kersten (Uni Hamburg) Coherence of Supernova Neutrinos 8 / 13

  14. Sometimes Decoherence Is Irrelevant P ( ν e → ν e ) = | cos 2 θ + sin 2 θ e i φ | 2 = cos 4 θ + sin 4 θ + 2 cos 2 θ sin 2 θ cos φ Measured probability: average over energy resolution ∆ E of detector ∆ E too large � interference term vanishes Jörn Kersten (Uni Hamburg) Coherence of Supernova Neutrinos 8 / 13

  15. Sometimes Decoherence Is Irrelevant P ( ν e → ν e ) = | cos 2 θ + sin 2 θ e i φ | 2 = cos 4 θ + sin 4 θ + 2 cos 2 θ sin 2 θ cos φ Measured probability: average over energy resolution ∆ E of detector ∆ E too large � interference term vanishes � Need sufficient energy resolution to observe oscillations 1.0 0.8 P � Ν e �Ν e � 0.6 0.4 0.2 0.0 0 5 10 15 20 25 30 E � MeV ∆ E max Jörn Kersten (Uni Hamburg) Coherence of Supernova Neutrinos 8 / 13

  16. Sometimes Decoherence Is Irrelevant P ( ν e → ν e ) = | cos 2 θ + sin 2 θ e i φ | 2 = cos 4 θ + sin 4 θ + 2 cos 2 θ sin 2 θ cos φ Measured probability: average over energy resolution ∆ E of detector ∆ E too large � interference term vanishes � Need sufficient energy resolution to observe oscillations Corresponding uncertainty of arrival time ∆ t ∼ 1 / ∆ E Coherence preserved for wave packets arriving within ∆ t , even if they are spacially separated � Detector restores coherence Jörn Kersten (Uni Hamburg) Coherence of Supernova Neutrinos 8 / 13

  17. Sometimes Decoherence Is Irrelevant P ( ν e → ν e ) = | cos 2 θ + sin 2 θ e i φ | 2 = cos 4 θ + sin 4 θ + 2 cos 2 θ sin 2 θ cos φ Measured probability: average over energy resolution ∆ E of detector ∆ E too large � interference term vanishes � Need sufficient energy resolution to observe oscillations Corresponding uncertainty of arrival time ∆ t ∼ 1 / ∆ E Coherence preserved for wave packets arriving within ∆ t , even if they are spacially separated � Detector restores coherence Always the case in vacuum and matter with slowly changing density (adiabatic case) Does this change in non-adiabatic case? Jörn Kersten (Uni Hamburg) Coherence of Supernova Neutrinos 8 / 13

  18. Adiabaticity Violation Simplest case: density step Each wave packet splits up into two ρ ρ ′ ρ ′′ ν 1 Jörn Kersten (Uni Hamburg) Coherence of Supernova Neutrinos 9 / 13

  19. Adiabaticity Violation Simplest case: density step Each wave packet splits up into two ρ ρ ′ ρ ′′ ν ′ 1 ν 1 ν ′ 2 Jörn Kersten (Uni Hamburg) Coherence of Supernova Neutrinos 9 / 13

  20. Adiabaticity Violation Simplest case: density step Each wave packet splits up into two ρ ρ ′ ρ ′′ ν ′ ν ′ 1 1 ν 1 ν ′ ν ′ 2 2 Jörn Kersten (Uni Hamburg) Coherence of Supernova Neutrinos 9 / 13

  21. Adiabaticity Violation Simplest case: density step Each wave packet splits up into two ρ ρ ′ ρ ′′ ν ′′ 1 ν ′ ν ′ 1 1 ν ′′ 2 ν 1 ν ′′ 1 ν ′ ν ′ 2 2 ν ′′ 2 Jörn Kersten (Uni Hamburg) Coherence of Supernova Neutrinos 9 / 13

  22. Adiabaticity Violation Simplest case: density step Each wave packet splits up into two ρ ρ ′ ρ ′′ ν ′′ ν ′′ 1 1 ν ′ ν ′ 1 1 ν ′′ ν ′′ 2 2 ν 1 ν ′′ ν ′′ 1 1 ν ′ ν ′ 2 2 ν ′′ ν ′′ 2 2 Jörn Kersten (Uni Hamburg) Coherence of Supernova Neutrinos 9 / 13

  23. Adiabaticity Violation Simplest case: density step Each wave packet splits up into two Different oscillation phase in each layer Complete coherence: 2 � � a + b e i φ 1 + c e i φ 2 + . . . � P = � � � 0.70 0.65 P � Ν 1 �Ν e � 0.60 0.55 0.50 6 8 10 12 14 16 18 20 E � MeV Jörn Kersten (Uni Hamburg) Coherence of Supernova Neutrinos 9 / 13

  24. Adiabaticity Violation Simplest case: density step Each wave packet splits up into two Different oscillation phase in each layer Complete coherence: 2 � � a + b e i φ 1 + c e i φ 2 + . . . � P = � � � Complete decoherence: P = a 2 + b 2 + c 2 + . . . Energy resolution good enough to resolve all oscillation features ⇒ detector restores coherence as before Jörn Kersten (Uni Hamburg) Coherence of Supernova Neutrinos 9 / 13

  25. Incomplete Averaging 2 � � a + b e i φ 1 + c e i φ 2 + . . . � P = � � � = a 2 + b 2 + c 2 + · · · + 2 ab cos φ 1 + 2 bc cos ( φ 2 − φ 1 ) 0.70 0.65 P � Ν 1 �Ν e � 0.60 0.55 0.50 6 8 10 12 14 16 18 20 E � MeV Energy resolution may be too bad to observe cos φ 1 term good enough to observe cos ( φ 2 − φ 1 ) term if φ 1 ≈ φ 2 Jörn Kersten (Uni Hamburg) Coherence of Supernova Neutrinos 10 / 13

Recommend


More recommend