pathways to discovering supernova neutrinos
play

Pathways to Discovering Supernova Neutrinos Thomas D. P . Edwards , - PowerPoint PPT Presentation

Pathways to Discovering Supernova Neutrinos Thomas D. P . Edwards , Sebastian Baum, Bradley J. Kavanagh, Patrick Stengel, Andrzej K. Drukier, Katherine Freese, Maciej Grski, Christoph Weniger 1906.05800 1 Quantamagazine 2 Thomas D. P


  1. Pathways to Discovering Supernova Neutrinos Thomas D. P . Edwards , Sebastian Baum, Bradley J. Kavanagh, Patrick Stengel, Andrzej K. Drukier, Katherine Freese, Maciej Górski, Christoph Weniger 1906.05800 �1

  2. Quantamagazine �2 Thomas D. P . Edwards | TAUP 2019 | 1906.05800

  3. What are the Di fg erent Ways of Observing SN Neutrinos �3 Thomas D. P . Edwards | TAUP 2019 | 1906.05800

  4. What are the Di fg erent Ways of Observing SN Neutrinos Direct observation of a SN event in our Galaxy �3 Thomas D. P . Edwards | TAUP 2019 | 1906.05800

  5. What are the Di fg erent Ways of Observing SN Neutrinos Observing the Diffuse Direct observation of a background from SN SN event in our Galaxy throughout the Universe �3 Thomas D. P . Edwards | TAUP 2019 | 1906.05800

  6. What are the Di fg erent Ways of Observing SN Neutrinos Observing the collective Observing the Diffuse Direct observation of a emission of SN from background from SN SN event in our Galaxy within the galaxy throughout the Universe �3 Thomas D. P . Edwards | TAUP 2019 | 1906.05800

  7. <latexit sha1_base64="aTSxs8PLfXiUlDduWSlrkjQ3VWk=">ACOHicbVDLSgMxFM3Ud31VXboJFqFuykwVdCmK4EZ8YFXo1CGTZtrQzMPkjlDCfJYbP8OduHGhiFu/wExbQVsPhBzOZfkHj8RXIFtP1uFicmp6ZnZueL8wuLScml9UrFqaSsTmMRyxufKCZ4xOrAQbCbRDIS+oJd+93D3L+Z1LxOLqEXsKaIWlHPOCUgJG80mnxyNMXGXYFu8M17AaSUB162qUdnt3qWoZPH2ZdoEAqj8OAPVlbzdga08luH7/Cp6pbJdtfvA48QZkjIa4swrPbmtmKYhi4AKolTDsRNoaiKBU8GyopsqlhDaJW3WMDQiIVN3V8w5tGaeEgluZEgPvq7wlNQqV6oW+SIYGOGvVy8T+vkUKw19Q8SlJgER08FKQCQ4zFnGLS0ZB9AwhVHLzV0w7xHQHpu8BGd05XFyVas629Xa+U5/2BYxyxaRxuoghy0i/bRMTpDdUTRA3pBb+jderRerQ/rcxAtWMOZNfQH1tc3Qgmstw=</latexit> Typical Recoil Energies for SN Neutrinos • Recoil energy of a collision is O(1) KeV - very DSNB 10 2 small energy deposit to detect galactic d φ /dE ν [cm − 2 s − 1 MeV − 1 ] • Although neutrinos have a small mass, there 10 1 increased velocities lead to O(1-10) KeV recoils E R ≤ 2 m 2 χ M T 10 0 ( m χ M T ) 2 v 2 10 − 1 10 − 1 10 0 10 1 10 2 E ν [MeV] �4 Thomas D. P . Edwards | TAUP 2019 | 1906.05800

  8. Small Damage Track Features can be Observed in Minerals • Paleo-detectors are minerals from far below the Earths surface (5-10 km) . Importantly they are 1 billion years old • Permanent damage track features in the structure of the mineral. �5 Thomas D. P . Edwards | TAUP 2019 | 1906.05800

  9. <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> Basics of Building a Detector: Mass vs Exposure Recoil Rate ∝ Target Mass × Observation Time �6 Thomas D. P . Edwards | TAUP 2019 | 1906.05800

  10. <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> Basics of Building a Detector: Mass vs Exposure Recoil Rate ∝ Target Mass × Observation Time Smallish Huge Targets Exposure �6 Thomas D. P . Edwards | TAUP 2019 | 1906.05800

  11. <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> Basics of Building a Detector: Mass vs Exposure Recoil Rate ∝ Target Mass × Observation Time �7 Thomas D. P . Edwards | TAUP 2019 | 1906.05800

  12. <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> Basics of Building a Detector: Mass vs Exposure Recoil Rate ∝ Target Mass × Observation Time Small Targets Huge Exposure �7 Thomas D. P . Edwards | TAUP 2019 | 1906.05800

  13. Reading the Tracks: X-ray Tomography Holler et al. 14 �8 Thomas D. P . Edwards | TAUP 2019 | 1906.05800

  14. Cosmic Rays Induce Large Backgrounds Depth [km] 2 5 7.5 10 Neutron Flux 10 3 10 1 10 -4 10 -8 [1/cm 2 /Gpc] �9 Thomas D. P . Edwards | TAUP 2019 | 1906.05800

  15. <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> Natural Radioactivity: Single alphas • Natural radioactivity , most importantly Uranium-238 causes multiple backgrounds β − β − α α 238 U → 234 Th → 234m Pa → 234 U → 230 Th − − − − α α α → 226 Ra → 222 Rn → 206 Pb − − − → . . . − �10 Thomas D. P . Edwards | TAUP 2019 | 1906.05800

  16. <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> Natural Radioactivity: Single alphas • Natural radioactivity , most importantly Uranium-238 causes multiple backgrounds β − β − α α 238 U → 234 Th → 234m Pa → 234 U → 230 Th − − − − α α α → 226 Ra → 222 Rn → 206 Pb − − − → . . . − • Half life of the second alpha in the decay chain is 10 5 yr • Alpha does not leave a track, but the daughter nucleus does �10 Thomas D. P . Edwards | TAUP 2019 | 1906.05800

  17. Natural Radioactivity: Spontaneous Fission • Sometimes uranium spontaneously splits into two lighter nuclei, whilst emitting fast neutrons • These neutrons cause many well separated tracks - huge background �11 Thomas D. P . Edwards | TAUP 2019 | 1906.05800

  18. Natural Radioactivity: Spontaneous Fission • Sometimes uranium spontaneously splits into two lighter nuclei, whilst emitting fast neutrons • These neutrons cause many well separated tracks - huge background Epsomite; C 238 = 0.01 ppb 10 6 dR/dx [nm − 1 kg − 1 Myr − 1 ] Galactic SN n -bkg ν -bkg 234 Th-bkg 10 4 10 2 10 0 10 − 2 10 − 4 10 1 10 2 10 3 x [nm] �11 Thomas D. P . Edwards | TAUP 2019 | 1906.05800

  19. <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> Natural Radioactivity: Spontaneous Fission • Sometimes uranium spontaneously splits into two lighter nuclei, whilst emitting fast neutrons • These neutrons cause many well separated tracks - huge background Epsomite; C 238 = 0.01 ppb 10 6 dR/dx [nm − 1 kg − 1 Myr − 1 ] Galactic SN n -bkg ν -bkg 234 Th-bkg 10 4 10 2 10 0 10 − 2 10 − 4 10 1 10 2 10 3 x [nm] Uranium-238 Concentration ∼ 0 . 01 ppb �11 Thomas D. P . Edwards | TAUP 2019 | 1906.05800

  20. <latexit sha1_base64="BSpmwxdNpOUipiE4IFbPgvj8m8=">ACNXicbVDLSsNAFJ34rPUVdelmsAhCoSRV0GXRjQsXFewDmlgmk0k7dDIJMxOlhPyUG/DlS5cKOLWX3DSVqtBwbOnHMv97jxYxKZVkvxsLi0vLKamGtuL6xubVt7uw2ZQITBo4YpFoe0gSRjlpKoYaceCoNBjpOUNLnK/dUeEpBG/UcOYuCHqcRpQjJSWuaVEyLVF2EaZ+UphY6gvb5CQkT38Ef2pxUku03L+suTbjrVsq5ZsirWCHCe2BNSAhPUu+aT40c4CQlXmCEpO7YVKzdFQlHMSFZ0EklihAeoRzqachQS6ajqzN4qBUfBpHQjys4Un93pCiUch6ujJfUc56ufif10lUcOamlMeJIhyPBwUJgyqCeYTQp4JgxYaICyo3hXiPhIKx10UYdgz548T5rVin1cqV6flGrnkzgKYB8cgCNg1NQA5egDhoAgwfwDN7Au/FovBofxue4dMGY9OyBPzC+vgHc16D</latexit> Background Neutrinos: Solar and Atmospheric p + p → d + e + + ν e Epsomite; C 238 = 0.01 ppb 10 6 dR/dx [nm − 1 kg − 1 Myr − 1 ] Galactic SN n -bkg ν -bkg 234 Th-bkg 10 4 10 2 10 0 10 − 2 10 − 4 10 1 10 2 10 3 x [nm] �12 Thomas D. P . Edwards | TAUP 2019 | 1906.05800

  21. <latexit sha1_base64="BSpmwxdNpOUipiE4IFbPgvj8m8=">ACNXicbVDLSsNAFJ34rPUVdelmsAhCoSRV0GXRjQsXFewDmlgmk0k7dDIJMxOlhPyUG/DlS5cKOLWX3DSVqtBwbOnHMv97jxYxKZVkvxsLi0vLKamGtuL6xubVt7uw2ZQITBo4YpFoe0gSRjlpKoYaceCoNBjpOUNLnK/dUeEpBG/UcOYuCHqcRpQjJSWuaVEyLVF2EaZ+UphY6gvb5CQkT38Ef2pxUku03L+suTbjrVsq5ZsirWCHCe2BNSAhPUu+aT40c4CQlXmCEpO7YVKzdFQlHMSFZ0EklihAeoRzqachQS6ajqzN4qBUfBpHQjys4Un93pCiUch6ujJfUc56ufif10lUcOamlMeJIhyPBwUJgyqCeYTQp4JgxYaICyo3hXiPhIKx10UYdgz548T5rVin1cqV6flGrnkzgKYB8cgCNg1NQA5egDhoAgwfwDN7Au/FovBofxue4dMGY9OyBPzC+vgHc16D</latexit> Background Neutrinos: Solar and Atmospheric p + p → d + e + + ν e Epsomite; C 238 = 0.01 ppb 10 6 dR/dx [nm − 1 kg − 1 Myr − 1 ] Galactic SN n -bkg ν -bkg 234 Th-bkg 10 4 10 2 10 0 10 − 2 10 − 4 10 1 10 2 10 3 x [nm] �12 Thomas D. P . Edwards | TAUP 2019 | 1906.05800

Recommend


More recommend