supergeometry of gauge pde and aksz sigma models
play

Supergeometry of gauge PDE and AKSZ sigma models Maxim Grigoriev - PowerPoint PPT Presentation

Supergeometry of gauge PDE and AKSZ sigma models Maxim Grigoriev Based on: M.G., 1606.07532 M.G., A. Verbovetsky, to appear K. Alkalaev, M.G. 2013 Glenn Barnich, M.G. 2010 M.G. 2010,2012 June 27, 2016, Bialowieza, Poland Motivations


  1. Supergeometry of gauge PDE and AKSZ sigma models Maxim Grigoriev Based on: M.G., 1606.07532 M.G., A. Verbovetsky, to appear K. Alkalaev, M.G. 2013 Glenn Barnich, M.G. 2010 M.G. 2010,2012 June 27, 2016, Bialowieza, Poland

  2. Motivations • Batalin-Vilkovisky (BV) approach to gauge systems (or its generalizations) is probably the most powerful. Batalin, (Fradkin), Vilkovisky, 1981 . . . • For various topological models their BV formulation can be cast into the form of AKSZ sigma model. Alexandrov, Kontsevich, Schwartz, Zaboronsky, 1994 . • In so doing the equations of motion, gauge symmetries, etc. are encoded in a homological vector field Q on the target space, which is a Q -manifold (or QP -manifold in Lagrangian case).

  3. • A natural question is weather the same can be done for non-topological systems? How the gauge symmetries, Lagrangians, etc. are encoded in the geometry of the target space? • For a local gauge theory AKSZ-like formulation has certain advantages over the usual jet-space version of the BV formalism Henneaux; Barnich, Brandt, Henneaux This has to do with the manifest background indepen- dence of AKSZ, which can be employed in studying boundary values, manifest realization symmetries etc.

  4. Batalin-Vilkovisky formalism: Given equations T a , gauge symmetries R i α , reducibility re- lations,.... the BRST differential: s 2 = 0 , s = δ + γ + . . . , gh( s ) = 1 ∂ ∂ ∂ ∂ P a + Z a γ = c α R i δ = T a ∂φ i + . . . . A P a ∂π A . . . , α δ – (Koszule-Tate) restriction to the stationary surface γ – implements gauge invariance condition φ i – fields, c α – ghosts, P a – ghost momenta, π A – reducibility ghost momenta gh( φ i ) = 0 , gh( c α ) = 1 , gh( P a ) = − 1 , . . . BRST differential completely defines the system. Equations of motion and gauge symmetries can be read off from s : δ ǫ φ i = ( sφ i ) | c α = ǫ α , P a =0 , ... s P a | P a =0 , c α =0 ,... = 0 ,

  5. T i = δS 0 If the theory is Lagrangian then: δφ i , reducibility relations R i α T i = 0 so that Z i α = R i α Natural bracket structure (antibracket) � � � � φ i , P j = δ i c α , P β = δ α j β BV master action � � α c α + . . . S BV = S 0 + P i R i s = · , S BV , Master equation: � � s 2 = 0 = 0 ⇐ ⇒ S BV , S BV Example: YM theory Fields: A µ , C (with values in the Lie algebra) Antifields: A ∗ µ , C ∗ Gauge part BRST differential: γA µ = ∂ µ C + [ A µ , C ] Master action: � d n x Tr[ A ∗ µ ( ∂ µ C + [ A µ , C ]) + 1 2 C ∗ [ C, C ]] S BV = S 0 +

  6. AKSZ sigma models M - supermanifold (target space) with coordinates Ψ A : Ghost degree – gh() (odd)symplectic structure σ , gh( σ ) = n − 1 and hence (odd)Poisson bracket { · , · } , gh( { · , · } ) = − n + 1 “BRST potential” S M (Ψ) , gh( S M ) = n , master equation { S M , S M } = 0 ( QP structure: Q = { · , S M } and P = { · , · } ) X - supermanifold (source space) Ghost degree gh( ) d – odd vector field, d 2 = 0, gh( d ) = 1 Tipically, X = T [1] X , coordinates x µ , θ µ ≡ dx µ , d = θ µ ∂ ∂x µ , µ = 0 , . . . n − 1

  7. Φ : X → M . Fields Ψ A ( x, θ ) ≡ Φ ∗ (Ψ A ). BV master action � � (Φ ∗ ( χ ))( d ) + Φ ∗ ( S M ) � , S BV = gh( S BV ) = 0 χ is potential for σ = dχ . In components: � � � d n xd n θ χ A (Ψ( x, θ )) d Ψ A ( x, θ ) + S M (Ψ( x, θ )) S BV = BV antibracket � � � � � � � δ R F δG d n xd n θ δ Ψ A ( x, θ ) σ AB = gh = 1 F, G , , δ Ψ B ( x, θ ) σ AB (Ψ) – components of the Poisson bivector. Master equation: � � = 0 , S BV , S BV

  8. BRST differential: � � Q A = s AKSZ Ψ A ( x, θ ) = d Ψ A ( x, θ )+ Q A (Ψ( x, θ )) , Ψ A , S M Natural lift of Q and d to the space of maps. Dynamical fields: those of vanishing ghost degree 0 1 k µ ( x ) θ µ + . . . Ψ A ( x, θ ) = Ψ A ( x ) + Ψ A Ψ A µ 1 ...µ k ) = gh(Ψ A ) − k gh( k If gh(Ψ A ) = k with k � 0 then Ψ A µ 1 ...µ k ( x ) is dynamical.

  9. AKSZ equations of motion σ AB ( d Ψ A + Q A ) = 0 , d Ψ A ( x, θ ) + Q A (Ψ( x, θ )) = 0 ⇒ (recall: σ AB is invertible) AKSZ at the level of equations of motion (nonlagrangian) ∂ Q 2 = 0 . Q = Q A { , } , S M ⇒ ∂ Ψ A I.e. target is a generic Q manifold. target doesn’t know dim X ! (Recall gh( S M ) = n = dim X ) If gh(Ψ A ) � 0 ∀ Ψ A then BV-BRST extended FDA. Otherwise BV-BRST extended FDA with constraints.

  10. Examples: Chern-Simons: AKSZ, 1994 Target space M : M = g [1], g – Lie algebra with invariant inner product. e i –basis in g , C i – coordinates on g , gh( C i ) = 1, C = C i e i � C i , C j � S M = 1 = � e i , e j � − 1 6 � C, [ C, C ] � , Source space: X = T [1] X , X – 3-dim manifold. Fied content µ ( x ) + θ µ θ ν A ∗ i µν + ( θ ) 3 c ∗ i C i ( x, θ ) = c i ( x ) + θ µ A i BV action � � 1 2 � C, d C � +1 2 � A, d A � +1 ( 1 S BV = 6 � C, [ C, C ] � ) = 6 � A, [ A, A ] � )+ . . .

  11. 1d AKSZ systems Target space M – Extended phase space: { , } – Poisson bracket, S M = Ω − θH , Ω – BRST charge, H - BRST invariant Hamiltonian Source space X = T [1]( R 1 ), coordinates t, θ BV action M.G., Damgaard, 1999 � dtdθ ( χ A d ψ A + Ω − θH ) S BV = Integration over θ gives BV for the Hamiltoninan action Fisch, Henneaux, 1989, Batalin, Fradkin 1988 . c, � x µ , � Example: coordinates on M : P , � p µ , BRST charge � p 2 − m 2 ), Ω = � c ( � � � x µ + � c ( p 2 − m 2 )) = x µ + λ ( p 2 + m 2 )) + S BV = dtdθ ( � c + � dt ( p µ ˙ p µ d � P d � x µ ( t, θ ) = x µ ( t ) + θp µ p µ ( t, θ ) = p µ ( t ) + θx ∗ ∗ ( t ) , µ ( t ) , � � c ( t, θ ) = c ( t ) + θλ ( t ) , � . . .

  12. – Background-independent – AKSZ is both Lagrangian and Hamiltonian AKSZ model: ( M, S M , { , } ) and ( X , d ). Let X = X S × R 1 Barnich, M.G, 2003 � � , � (Φ ∗ ( χ ))( d ) + Φ ∗ ( S M ) Ω BFV = gh(Ω BFV ) = 1 X S � d n − 1 xd n − 1 θ { · , · } { · , · } BFV = { Ω BFV , Ω BFV } BFV = 0 . – Higher BRST charges Similarly: X k ⊂ X – dimension- k submanifold � (Φ ∗ ( χ ))( d ) + Φ ∗ ( S M )) Ω X k = X k In particular, Ω BFV = Ω X S , S BV = Ω X

  13. – At the level of equations of motion AKSZ is a gen- eralization of so-called unfolded formalism independently developed in the context of HS theories Vasiliev 1988,. . . . – At the level of equations of motion the same target space gives an AKSZ model for any X k ⊂ X or even different X . Useful for “replacing space-time”. E.g. Vasiliev 2002 (asymptotic) boundary values, e.g. in the context of AdS/CFT For higher-spin fields Vasiliev, 2012; Bekaert M.G. 2012 – Locally in X and M : Barnich, M.G. 2009 H g ( s AKSZ , local functionals) ∼ = H g + n ( Q, C ∞ ( M )) � f . Isomorphism sends f ∈ C ∞ ( M ) to functional F = Compatible with the bracket. – If M finite dimensional and n > 1 – the model is topo- logical. What about non-topological?

  14. AKSZ form of PDE Jet-bundle: Fiber-bundle F → X (for simplicity: direct product of R n × R N ): base space (independent variables or space-time coordinates): x a , a = 1 , . . . , n . Fiber coordinates (dependent variables or fields) φ i . Jet- bundle: J 0 ( F ) : J 1 ( F ) : J 2 ( F ) x a , φ i , x a , φ i , φ i x a , φ i , φ i a , φ i a , ab , . . . Projections: . . . → J N ( F ) → J N − 1 ( F ) → . . . → J 1 ( F ) → J 0 ( F ) = F Useful to work with J ∞ ( F ). A local diff. form on J ∞ ( F ) – a form on J N ( F ) pulled back to J ∞ ( F ).

  15. J ∞ is equipped with the total derivative ∂ ∂ ∂ ∂ T ∂x a + φ i ∂φ i + φ i a = + . . . a ab ∂φ i b For a given section φ i = s i ( x ) and local function f [ φ ] � � ∂ � � ( ∂ T a f ) � φ = s,φ a = ∂ a s,... = ∂x a ( f � φ = s,φ a = ∂ a s,φ ab = ∂ a ∂ b s,... )

  16. Space time differentials dx a . Horizontal differential d h ≡ dx a ∂ T d 2 h = 0 . a , Differential forms: φ I = φ i α = α ( x, dx, φ, φ a , . . . ) I 1 ...I k d v φ I 1 . . . d v φ I k , a 1 ...a m Vertical differential: d v ≡ d − d h = d v φ I ∂ ∂φ I Variational bicomplex ( Vinogradov’s C -spectral sequence): d 2 d 2 v = 0 , d v d h + d h d v = 0 , h = 0 Bidegree ( l, p ). On the jet space H > 0 ( d v ) = 0 = H <n ( d h ) (unless global geometry!). H n ( d h ) = local functionals

  17. A system of partially differential equations (PDE) is a col- lection of local functions on J ∞ ( F ) E α [ φ, x ] . The equation manifold (stationary surface): E ⊂ J ∞ ( F ) singled out by: ∂ T a 1 . . . ∂ T a l E α = 0 , l = 0 , 1 , 2 , . . . understood as the algebraic equations in J ∞ ( F ). It is usu- ally assumed that x a , φ i are not constrained, e.g. E is a bundle over the space-time. ∂ T a are tangent to E and hence restricts to E . So do the differentials d h and d v . ∂ T a | E determine a dim- n integrable distribution (Cartan distribution).

  18. Definition: [Vinogradov] A PDE is a manifold E equipped with an integrable distribution. In addition one typically assumes regularity, constant rank, and that E is a bundle over the spacetime. Use notation ( E , d h ). It is clear when PDEs are to be considered equivalent. Differential forms on E form the variational bicomplex of E . Note that in general H k ( d h ) � = 0 for k < n .

Recommend


More recommend