supercategorification and odd khovanov homology part 1
play

Supercategorification and Odd Khovanov Homology Part 1 Lo - PowerPoint PPT Presentation

Supercategorification and Odd Khovanov Homology Part 1 Lo Schelstraete 13 october 2020 1 Khovanov homology Jones = q 9 + q 5 + q 3 + q 1 J polynomial 1 Khovanov homology Khovanov i -3 -2 -1 0


  1. Supercategorification and Odd Khovanov Homology Part 1 Léo Schelstraete 13 october 2020

  2. 1 Khovanov homology Jones � � = − q − 9 + q − 5 + q − 3 + q − 1 J polynomial

  3. 1 Khovanov homology Khovanov � � i -3 -2 -1 0 Kh = homology Kh i Q [ − 9 ] Q [ − 5 ] 0 Q [ − 3 ] ⊕ Q [ − 1 ] Jones � � = − q − 9 + q − 5 + q − 3 + q − 1 J polynomial

  4. 1 Khovanov homology Khovanov � � i -3 -2 -1 0 Kh = homology Kh i Q [ − 9 ] Q [ − 5 ] 0 Q [ − 3 ] ⊕ Q [ − 1 ] q -graduation : qdim ( Kh − 3 ) = q − 9 Jones � � = − q − 9 + q − 5 + q − 3 + q − 1 J polynomial

  5. 1 Khovanov homology Khovanov � � i -3 -2 -1 0 Kh = homology Kh i Q [ − 9 ] Q [ − 5 ] 0 Q [ − 3 ] ⊕ Q [ − 1 ] q -graduation : qdim ( Kh − 3 ) = q − 9 ( − 1 ) 0 ( q − 3 + q − 1 ) ( − 1 ) − 2 q − 5 ( − 1 ) − 3 q − 9 Jones � � = − q − 9 + q − 5 + q − 3 + q − 1 J polynomial

  6. 1 Khovanov homology Khovanov � � i -3 -2 -1 0 Kh = homology Kh i Q [ − 9 ] Q [ − 5 ] 0 Q [ − 3 ] ⊕ Q [ − 1 ] q -graduation : qdim ( Kh − 3 ) = q − 9 i ( − 1 ) i qdim ( Kh i ) � ( − 1 ) 0 ( q − 3 + q − 1 ) ( − 1 ) − 2 q − 5 ( − 1 ) − 3 q − 9 Jones � � = − q − 9 + q − 5 + q − 3 + q − 1 J polynomial

  7. 1 Khovanov homology Khovanov � � i -3 -2 -1 0 Kh = homology Kh i Q [ − 9 ] Q [ − 5 ] 0 Q [ − 3 ] ⊕ Q [ − 1 ] q -graduation : qdim ( Kh − 3 ) = q − 9 i ( − 1 ) i qdim ( Kh i ) � ( − 1 ) 0 ( q − 3 + q − 1 ) ( − 1 ) − 2 q − 5 ( − 1 ) − 3 q − 9 Jones � � = − q − 9 + q − 5 + q − 3 + q − 1 J polynomial

  8. 1 Khovanov homology Khovanov � � homology of a i -3 -2 -1 0 Kh = homology topological space Kh i Q [ − 9 ] Q [ − 5 ] 0 Q [ − 3 ] ⊕ Q [ − 1 ] q -graduation : qdim ( Kh − 3 ) = q − 9 i ( − 1 ) i qdim ( Kh i ) i ( − 1 ) i dim H i � χ = � ( − 1 ) 0 ( q − 3 + q − 1 ) ( − 1 ) − 2 q − 5 ( − 1 ) − 3 q − 9 Jones � � Euler = − q − 9 + q − 5 + q − 3 + q − 1 J polynomial characteristic

  9. 2 Categorification Topological spaces T 1 T 2 f continuous function

  10. 2 Categorification Topological spaces T 1 T 2 f continuous function H • H • ( f ) H • ( T 1 ) H • ( T 2 )

  11. 2 Categorification Knots Topological spaces K 1 K 2 T 1 T 2 f cobordism continuous function H • H • ( f ) H • ( T 1 ) H • ( T 2 )

  12. 2 Categorification Knots Topological spaces K 1 K 2 T 1 T 2 f cobordism continuous function H • Kh Kh ( f ) H • ( f ) Kh ( K 1 ) Kh ( K 2 ) H • ( T 1 ) H • ( T 2 )

  13. 1 + 2 Construction of Khovanov homology Kauffman state sum of Jones polynomial: ξ 0 ξ 1 resolution for K : ξ ∈ { 0 , 1 } # crossings , that is a choice of resolution ξ 0 or ξ 1 for each crossing. ξ ( − 1 ) # { ξ 1 in ξ } ( q + q − 1 ) # { circles in ξ } V ( K ) = �

  14. 1 + 2 Construction of Khovanov homology Kauffman state sum of Jones polynomial: ξ 0 ξ 1 resolution for K : ξ ∈ { 0 , 1 } # crossings , that is a choice of resolution ξ 0 or ξ 1 for each crossing. ξ ( − 1 ) # { ξ 1 in ξ } ( q + q − 1 ) # { circles in ξ } V ( K ) = �

  15. 1 + 2 Construction of Khovanov homology taken from Bar-Natan, “Khovanov’s homology for tangles and cobordisms”

  16. 2 ′ The slice (or tangle) strategy: classical case taken from Ohtsuki “quantum invariants”

  17. 2 ′ The slice (or tangle) strategy: classical case taken from Ohtsuki “quantum invariants”

  18. 2 ′ The slice (or tangle) strategy: classical case taken from Ohtsuki “quantum invariants”

  19. 2 ′ The slice (or tangle) strategy: classical case taken from Ohtsuki “quantum invariants”

  20. 2 ′ The slice (or tangle) strategy: classical case taken from Ohtsuki “quantum invariants”

  21. 2 ′ The slice (or tangle) strategy: classical case taken from Ohtsuki “quantum invariants”

  22. 2 ′ The slice (or tangle) strategy: categorified case

  23. 2 ′ The slice (or tangle) strategy: categorified case

  24. 2 ′ The slice (or tangle) strategy: categorified case Ch • ( S ) . . . · · · • • · · · · · · • • · · · · · · • • · · · . . .

  25. 2 ′ The slice (or tangle) strategy: categorified case Ch • ( S ) . . . ∗ · · · • • · · · ∗ · · · • • · · · ∗ · · · • • · · · ∗ . . .

  26. 2 ′ The slice (or tangle) strategy: categorified case Ch • ( S ) . . . ∗ · · · • • · · · ∗ · · · • • · · · ∗ · · · • • · · · ∗ . . . homology homotopy class ⇔ is an invariant independent of the diagram

  27. 2 ′ 2-categories Ch • ( S ) . . . . . . . . . • • • ∗ ∗ • • • . . . . . . . . .

  28. 2 ′ 2-categories Ch • ( S ) . . . . . . . . . • • • ∗ ∗ • • • . . . . . . . . . ⇒ S is a 2-category

  29. 2 ′ 2-categories g Ch • ( S ) 2-categories . . . B A α . . . . . . f 2-morphism • • • ∗ ∗ • • • . . . . . . . . . ⇒ S is a 2-category

  30. 2 ′ 2-categories g Ch • ( S ) 2-categories . . . B A α . . . . . . f 2-morphism • • • h ∗ ∗ h β • • • g B A = B A 1 β ◦ α . . . α . . . f . . . f g ′ g ′ g g ⇒ S is a 2-category = C 2 C β B α A β ∗ α A f ′ f f ′ f

  31. 2 ′ 2-categories: examples 1 homotopies: 2 natural transformations: h g ′ g ′ g g h β g B A = B β ◦ α A C B α A = C β ∗ α A β α f f ′ f f ′ f f

  32. 2 ′ Defining the invariant � � � � �− → ∗ �− → ∗ � � �− → ∗ − → ∗

  33. 2 ′ Defining the invariant � � � � �− → ∗ �− → ∗ � � �− → ∗ − → ∗ 1 The complex is a cube of dimension n , where n is the number of crossings ⇒ similar to Khovanov homology !

  34. 2 ′ Defining the invariant � � � � �− → ∗ �− → ∗ � � �− → ∗ − → ∗ 1 The complex is a cube of dimension n , where n is the number of crossings ⇒ similar to Khovanov homology ! 2 But we used the “slice strategy” , similarly to quantum algebras , and S is purely algebraic .

  35. Conclusion 1 Khovanov homology is a categorication of the Jones polynomial: it categorifies the Kauffman bracket into a complex of length 1. The Jones polynomial is the Euler characteristic of this homology.

  36. Conclusion 1 Khovanov homology is a categorication of the Jones polynomial: it categorifies the Kauffman bracket into a complex of length 1. The Jones polynomial is the Euler characteristic of this homology. 2 Categorification is the process of turning classical notion into categorical notion. We use this idea to unify the two approaches to the Jones polynomial (Khovanov homology and quantum algebras).

  37. Conclusion 1 Khovanov homology is a categorication of the Jones polynomial: it categorifies the Kauffman bracket into a complex of length 1. The Jones polynomial is the Euler characteristic of this homology. 2 Categorification is the process of turning classical notion into categorical notion. We use this idea to unify the two approaches to the Jones polynomial (Khovanov homology and quantum algebras). 2 ′ The right structure to categorify the quantum algebra is a 2-category . Thanks to this structure, we can sketch a construction that match both Khovanov’s construction and the quantum algebra’s construction.

  38. Conclusion 1 Khovanov homology is a categorication of the Jones polynomial: it categorifies the Kauffman bracket into a complex of length 1. The Jones polynomial is the Euler characteristic of this homology. 2 Categorification is the process of turning classical notion into categorical notion. We use this idea to unify the two approaches to the Jones polynomial (Khovanov homology and quantum algebras). 2 ′ The right structure to categorify the quantum algebra is a 2-category . Thanks to this structure, we can sketch a construction that match both Khovanov’s construction and the quantum algebra’s construction. 3 What is odd Khovanov homology? And how to adapt this construction to it ( superstructures )? See you after the break!

  39. Supercategorification and Odd Khovanov Homology Part 2 Léo Schelstraete 13 october 2020

  40. TOP Property of odd Khovanov homology “super” = ?

  41. TOP Property of odd Khovanov homology “super” = ? symmetric algebras even Khovanov homology

  42. TOP Property of odd Khovanov homology “super” = ? symmetric exterior algebras even odd Khovanov homology

  43. TOP Property of odd Khovanov homology “super” = ? symmetric exterior algebras even odd Khovanov x ∧ y = ( − 1 ) | x || y | y ∧ x homology

  44. TOP Property of odd Khovanov homology “super” = ? parity symmetric exterior algebras even odd Khovanov x ∧ y = ( − 1 ) | x || y | y ∧ x homology

Recommend


More recommend