sum of products evaluation schemes with fixed point
play

Sum-of-products Evaluation Schemes with Fixed-Point arithmetic, and - PowerPoint PPT Presentation

Context and Objectives Evaluation Schemes Conclusion Sum-of-products Evaluation Schemes with Fixed-Point arithmetic, and their application to IIR filter implementation Benoit Lopez - Thibault Hilaire - Laurent-St ephane Didier DASIP 2012


  1. Context and Objectives Evaluation Schemes Conclusion Sum-of-products Evaluation Schemes with Fixed-Point arithmetic, and their application to IIR filter implementation Benoit Lopez - Thibault Hilaire - Laurent-St´ ephane Didier DASIP 2012 October 24 th 2012 1/34

  2. Context and Objectives Evaluation Schemes Conclusion Outline Context and Objectives 1 Evaluation Schemes 2 Propagation Degradation errors Conclusion 3 2/34

  3. Context and Objectives Evaluation Schemes Conclusion On the first hand... A filter P n i =0 b i z − i h ( z ) = 1 + P n i =1 a i z − i Signal Processing LTI filters: FIR or IIR Its transfer function: � n i =0 b i z − i h ( z ) = 1 + � n i =1 a i z − i Algorithmic relationship used to compute output(s) from input(s), for example: n n � � y ( k ) = b i u ( k − i ) − a i y ( k − i ) 3/34 i =0 i =1

  4. Context and Objectives Evaluation Schemes Conclusion On the other hand... A target − γ 2 . . . 0 2 . . . α − 2 γ 2 ± s β α Hardware target (FPGA, ASIC) or software target (DSP, µ C) Using fixed-point arithmetic for different reasons: no FPU cost size power consumption etc. 4/34

  5. Context and Objectives Evaluation Schemes Conclusion − γ 2 . . . P n i =0 b i z − i 0 2 . . . α − 2 h ( z ) = γ 2 ± 1 + P n i =1 a i z − i s β α Need Methodology and tools for the implementation of embedded filter algorithms in fixed-point arithmetic. 5/34

  6. Context and Objectives Evaluation Schemes Conclusion − γ 2 . . . P n i =0 b i z − i 0 2 . . . α − 2 h ( z ) = γ 2 ± 1 + P n i =1 a i z − i s β α Need Methodology and tools for the implementation of embedded filter algorithms in fixed-point arithmetic. A first (and basic) methodology 1 Given a filter, choose an algorithm 2 Round the coefficients in fixed-point arithmetic 3 Implement algorithm 5/34

  7. Context and Objectives Evaluation Schemes Conclusion − γ 2 . . . P n i =0 b i z − i 0 2 . . . α − 2 h ( z ) = γ 2 ± 1 + P n i =1 a i z − i s β α Need Methodology and tools for the implementation of embedded filter algorithms in fixed-point arithmetic. A first (and basic) methodology 1 Given a filter, choose an algorithm There are many possible realizations 2 Round the coefficients in fixed-point arithmetic What format? Depends on the choice of algorithm 3 Implement algorithm Is there only one possible implementation? 5/34

  8. Context and Objectives Evaluation Schemes Conclusion From filter to code This work is a part of a global approach, transforming filters into fixed-point codes. adequacy best algorithm fixed-point architecture filter fixed-point realization code filters realizations evaluation optimization generation schemes pre- post- implementation implementation measures measures 6/34

  9. Context and Objectives Evaluation Schemes Conclusion From filter to code This work is a part of a global approach, transforming filters into fixed-point codes. adequacy best algorithm fixed-point architecture filter fixed-point realization code filters realizations evaluation optimization generation schemes pre- post- implementation implementation measures measures 6/34

  10. Context and Objectives Evaluation Schemes Conclusion Objective: Given an algorithm and a target, find the optimal implementation. model the fixed-point algorithms model the hardware resources (computational units, etc.) 7/34

  11. Context and Objectives Evaluation Schemes Conclusion Objective: Given an algorithm and a target, find the optimal implementation. model the fixed-point algorithms model the hardware resources (computational units, etc.) evaluate the degradation find one/some optimal implemented algorithm(s) 7/34

  12. Context and Objectives Evaluation Schemes Conclusion Outline Context and Objectives 1 Evaluation Schemes 2 Propagation Degradation errors Conclusion 3 8/34

  13. Context and Objectives Evaluation Schemes Conclusion Evaluation Scheme The only operations needed in filter algorithm computation are sum-of-products: n � S = c i · x i i =1 where c i are known constants and x i variables (inputs, state or intermediate variables). 9/34

  14. Context and Objectives Evaluation Schemes Conclusion Evaluation Scheme The only operations needed in filter algorithm computation are sum-of-products: n � S = c i · x i i =1 where c i are known constants and x i variables (inputs, state or intermediate variables). Question: How to implement S in fixed-point arithmetic? 9/34

  15. Context and Objectives Evaluation Schemes Conclusion SoP Example Let H be the transfer function of a butterworth filter of 4 th − order: H ( z ) = 0 . 00254078 + 0 . 01016312 z − 1 + 0 . 01524469 z − 2 + 0 . 01016312 z − 3 + 0 . 00254078 z − 4 1 − 2 . 64402372 z − 1 + 2 . 77901148 z − 2 − 1 . 34558515 z − 3 + 0 . 25124989 z − 4 10/34

  16. Context and Objectives Evaluation Schemes Conclusion SoP Example Let H be the transfer function of a butterworth filter of 4 th − order: H ( z ) = 0 . 00254078 + 0 . 01016312 z − 1 + 0 . 01524469 z − 2 + 0 . 01016312 z − 3 + 0 . 00254078 z − 4 1 − 2 . 64402372 z − 1 + 2 . 77901148 z − 2 − 1 . 34558515 z − 3 + 0 . 25124989 z − 4 Associated algorithm (Direct Form 1): y ( k ) = 0 . 00254078 u ( k ) + 0 . 01016312 z u ( k − 1) + 0 . 01524469 z u ( k − 2) +0 . 01016312 z u ( k − 3) + 0 . 00254078 u ( k − 4) + 2 . 64402372 y ( k − 1) − 2 . 77901148 y ( k − 2) + 1 . 34558515 y ( k − 3) − 0 . 25124989 y ( k − 4) 10/34

  17. Context and Objectives Evaluation Schemes Conclusion SoP Example Let H be the transfer function of a butterworth filter of 4 th − order: H ( z ) = 0 . 00254078 + 0 . 01016312 z − 1 + 0 . 01524469 z − 2 + 0 . 01016312 z − 3 + 0 . 00254078 z − 4 1 − 2 . 64402372 z − 1 + 2 . 77901148 z − 2 − 1 . 34558515 z − 3 + 0 . 25124989 z − 4 Associated algorithm (integer part on 16 bits): 21313 . 60743424 × 2 − 23 × u ( k ) + 21313 . 60743424 × 2 − 21 × u ( k − 1) y ( k ) = +31970 . 43212288 × 2 − 21 × u ( k − 2) + 21313 . 60743424 × 2 − 21 × u ( k − 3) +21313 . 60743424 × 2 − 23 × u ( k − 4) + 21659 . 84231424 × 2 − 13 × y ( k − 1) − 22765 . 66204416 × 2 − 13 × y ( k − 2) + 22046 . 0670976 × 2 − 14 × y ( k − 3) − 16465 . 91279104 × 2 − 16 × y ( k − 4) 10/34

  18. Context and Objectives Evaluation Schemes Conclusion SoP Example Let H be the transfer function of a butterworth filter of 4 th − order: H ( z ) = 0 . 00254078 + 0 . 01016312 z − 1 + 0 . 01524469 z − 2 + 0 . 01016312 z − 3 + 0 . 00254078 z − 4 1 − 2 . 64402372 z − 1 + 2 . 77901148 z − 2 − 1 . 34558515 z − 3 + 0 . 25124989 z − 4 Associated algorithm (round to nearest integer): 21314 × 2 − 23 × u ( k )+21314 × 2 − 21 × u ( k − 1) y ( k ) = +31970 × 2 − 21 × u ( k − 2)+21314 × 2 − 21 × u ( k − 3) +21314 × 2 − 23 × u ( k − 4)+21660 × 2 − 13 × y ( k − 1) − 22766 × 2 − 13 × y ( k − 2)+22046 × 2 − 14 × y ( k − 3) − 16466 × 2 − 16 × y ( k − 4) 10/34

  19. Context and Objectives Evaluation Schemes Conclusion In software, addition is commutative but maybe not associative On 4 bits 0 . 5 = 2 0 • 100 1 . 5 = 2 01 • 10 4 = 2 0100 • 11/34

  20. Context and Objectives Evaluation Schemes Conclusion In software, addition is commutative but maybe not associative On 4 bits 0 . 5 = 2 0 • 100 1 . 5 = 2 01 • 10 4 = 2 0100 • 4 + (0 . 5 + 1 . 5) = 2 010 • 0 + 0100 • = 2 0110 • = 10 6 (4 + 0 . 5) + 1 . 5 = 2 0100 • + 01 • 10 = 2 0101 • = 10 5 11/34

  21. Context and Objectives Evaluation Schemes Conclusion In software, addition is commutative but maybe not associative On 4 bits 0 . 5 = 2 0 • 100 1 . 5 = 2 01 • 10 4 = 2 0100 • 4 + (0 . 5 + 1 . 5) = 2 010 • 0 + 0100 • = 2 0110 • = 10 6 (4 + 0 . 5) + 1 . 5 = 2 0100 • + 01 • 10 = 2 0101 • = 10 5 Consider the order is important. + + + + + + × × × × × c 2 x 2 × × c 2 x 2 × × c 1 x 1 c 0 x 0 c 1 x 1 c 1 x 1 c 0 x 0 c 0 x 0 c 2 x 2 (a) (b) (c) (a) = (b) but (a) � = (c) 11/34

  22. Context and Objectives Evaluation Schemes Conclusion oSoP An evaluation scheme for a given SoP with a given order will be called ordered-Sum-of-Products (oSoP). Number of oSoPs For a given SoP of N th − order, there are � N − 1 i =1 (2 i − 1) possible oSoPs to consider. 12/34

  23. Context and Objectives Evaluation Schemes Conclusion SoP Example Let H be the transfer function of a butterworth filter of 4 th − order: H ( z ) = 0 . 00254078 + 0 . 01016312 z − 1 + 0 . 01524469 z − 2 + 0 . 01016312 z − 3 + 0 . 00254078 z − 4 1 − 2 . 64402372 z − 1 + 2 . 77901148 z − 2 − 1 . 34558515 z − 3 + 0 . 25124989 z − 4 Associated algorithm: 21314 × 2 − 23 × u ( k ) + 21314 × 2 − 21 × u ( k − 1) y ( k ) = +31970 × 2 − 21 × u ( k − 2) + 21314 × 2 − 21 × u ( k − 3) +21314 × 2 − 23 × u ( k − 4) + 21660 × 2 − 13 × y ( k − 1) − 22766 × 2 − 13 × y ( k − 2) + 22046 × 2 − 14 × y ( k − 3) − 16466 × 2 − 16 × y ( k − 4) There are here 9 multiplications, so we have � 8 i =1 (2 i − 1) ≃ 2 millions oSoPs to consider. For example... 13/34

Recommend


More recommend