sulphur melting an overview
play

Sulphur Melting An Overview 1 SANDVIK PROCESS SYSTEMS THE - PowerPoint PPT Presentation

Sulphur Melting An Overview 1 SANDVIK PROCESS SYSTEMS THE INDUSTRIAL PROCESSING COMPANY Agenda Sulphur Melting Strategy Before You Melt Sulphur Melting Technologies Footprint Comparison Sulphur Contamination


  1. Sulphur Melting – An Overview 1

  2. SANDVIK PROCESS SYSTEMS THE INDUSTRIAL PROCESSING COMPANY

  3. Agenda Sulphur Melting Strategy  Before You Melt  Sulphur Melting Technologies   Footprint Comparison Sulphur Contamination   Sulphuric Acid Material Selection  Melt Rate  Sulphur Block Reclaim  3

  4. Sulphur Melting Strategy Why does sulphur need to be melted?  Consumer requires liquid sulphur as a feed stock  Examples: Sulphuric acid plant, fertilizer  plant Sulphur needs to be converted to a marketable  form  Examples: Processing a sulphur block, cleanup of leak from liquid system or spillage from conveying system 4

  5. Before You Melt Desired capacity  Solid sulphur feed stock specifications  Liquid sulphur specifications  Operator considerations  Emissions considerations  Site and footprint considerations  5

  6. Sulphur Melting Technologies Melter Movement: Stationary vs. Mobile  Heat Transfer:  Immersion vs. Surface  Agitation vs. Stagnant  Internal vs. External  Feed System: Continuous vs. Batch  Emissions Management: Open-top vs.  Contained Contaminate Removal: Automatic vs.  Manual  Construction: In-ground vs. Stick-built vs. Skid-package 6

  7. Continuous, Immersion, Agitation 7

  8. Immersion Melting – Footprint Comparison Stagnant Batch (Pit) vs. Agitation with Continuous Feed (Skid) • Skid Area X 3 = Sulphur Pit Area • Pit Depth = 3 meters below ground • Skid Platform Height = 3 meters above ground 8

  9. Sulphur Contamination Solid contaminates  Sand, Rocks  Carsul  Clay  Liquid contaminates  H 2 O  H 2 SO 4 (sulphuric acid)  Hydrocarbons, Amines, Glycol  Gaseous contaminates  H 2 S, SO 2  Sulphur Vapour (Dust)  9

  10. Sulphuric Acid How it happens (2S + 2H 2 O + 3O 2 = 2H 2 SO 4 )  Impact / Neutralization  Prevention   Keep the sulphur dry!  Sodium Lauryl Sulfate (SLS) Strategy   SLS / Vancouver Port strategy 10

  11. Material Selection Corrosion Mechanisms   Wet Sulphur Corrosion  Sulphuric Acid Corrosion Carbon Steel  Stainless Steel  Cost vs. Benefit  11

  12. Melt Rate Factors to Consider: • Available Surface Area • Particle Size • Ambient Temperature • Moisture 12

  13. Melt Rate – Particle Size Immersion Melting Relationship • Smaller particles = more surface area = higher heat transfer capability • Mass: (1) 100 mm diameter particle = (4000) 6 mm diameter particles = 1.14 kg • Surface Area: (1) 100 mm particle = 0.032 m 2 (4000) 6 mm particles = 0.52 m 2 (16X) 13

  14. Production Capacity Vs. Ambient Temperature (Assuming 130 °C Sulphur Discharge T, 96% Availability) 1600 Capacity (Metric Tonnes/Day) 1400 1200 1000 0% H₂0 1% H₂0 800 2% H₂0 600 3% H₂0 4% H₂0 400 5% H₂0 200 0 -20 -15 -10 -5 0 5 10 15 20 Ambient Temperature, °C 14

  15. Sulphur Block Reclaim Melting needs to be considered in your block  pouring strategy because it affects:  Size and configuration of block  Allowable contamination in block  Utility infrastructure  Dust control options  Availability of block 15

  16. Sulphur Block Reclaim Shah Example: Time required to melt 1.2  million tonnes (4 months production)  1000 TPD, 300 Days Per Year = 4 Years  2000 TPD, 300 Days Per Year = 2 Years  4000 TPD, 300 Days Per Year = 1 Year 16

  17. Questions 17

Recommend


More recommend