stream reasoning for linked data
play

Stream Reasoning For Linked Data M. Balduini, J-P Calbimonte, O. - PowerPoint PPT Presentation

Stream Reasoning For Linked Data M. Balduini, J-P Calbimonte, O. Corcho, D. Dell'Aglio, E. Della Valle, and J.Z. Pan http://streamreasoning.org/sr4ld2013 OWL Reasoning and Stream Reasoning with LOD Jeff Z. Pan University of Aberdeen


  1. Stream Reasoning For Linked Data M. Balduini, J-P Calbimonte, O. Corcho, D. Dell'Aglio, E. Della Valle, and J.Z. Pan http://streamreasoning.org/sr4ld2013 OWL Reasoning and Stream Reasoning with LOD Jeff Z. Pan University of Aberdeen http://homepages.abdn.ac.uk/jeff.z.pan/pages/

  2. Share, Remix, Reuse — Legally § This work is licensed under the Creative Commons Attribution 3.0 Unported License. § Your are free: • to Share — to copy, distribute and transmit the work • to Remix — to adapt the work § Under the following conditions • Attribution — You must attribute the work by inserting – “ [source http://streamreasoning.org/sr4ld2013] ” at the end of each reused slide – a credits slide stating - These slides are partially based on “ Streaming Reasoning for Linked Data 2013 ” by M. Balduini, J-P Calbimonte, O. Corcho, D. Dell'Aglio, E. Della Valle, and J.Z. Pan http://streamreasoning.org/sr4ld2013 § To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0/ 2 http://streamreasoning.org/sr4ld2013

  3. LOD = Linked Open Data / Linked Ontological Data <rdf:Description rdf:about= “ http://www.w3.org/ People/Berners-Lee/card#i ” > <foaf:knows rdf:resource= “ http://dblp.l3s.de/ d2r/…/Dan_Brickley ”> </rdf:Description> http://streamreasoning.org/sr4ld2013

  4. Agenda 1. OWL Reasoning with LOD (30m) 2. OWL Stream Reasoning with LOD (40m) 3. Hands-on session (20m) 4 http://streamreasoning.org/sr4ld2013

  5. What is an Ontology A ¡formal ¡dictionary ¡of ¡domain ¡ vocabulary ¡ ¡ Introduces ¡ vocabulary ¡relevant ¡ only to ¡domain, ¡e.g.: ¡ ¡ Anatomy eat some ¡ Koala ¡ ¡ Specifies ¡meaning ¡(semantics) ¡of ¡ Plant terms ¡ partof ¡ Koala ¡eat ¡only ¡some ¡part ¡of ¡Eucalypt ¡ Eucalypt ¡ ¡ Eucalypt ¡is ¡Plant ¡ 5 http://streamreasoning.org/sr4ld2013

  6. Components of Ontology § A TBox (Terminonagy Box) is a set of “schema” axioms (sentences), e.g.: • i.e., a background theory for the vocabulary § An ABox (Assertion Box) is a set of “ data ” axioms (ground facts), e.g.: gummy: Koala 6 http://streamreasoning.org/sr4ld2013

  7. Ontology ¡Reasoning ¡ ¡ Infer implicit knowledge from explicit knowledge 7 http://streamreasoning.org/sr4ld2013

  8. Query Answering Example: SELECT ?X,?Y FROM < http://example.org/animal.owl > WHERE {?X eat ?Y .} SELECT ?X FROM < http://example.org/animal.owl > WHERE {?X rdf:type Herbivore .} http://streamreasoning.org/sr4ld2013

  9. The need for bridging the gap between data and queries Question Answering Social Discovery Semantic Search Digital Economy 9 http://streamreasoning.org/sr4ld2013

  10. The OWL family tree Undecidable OWL 2 Full 2NExpTime- OWL 2 DL Complete SROIQ NExpTime- OWL 1 DL Complete SHOIN PTime- OWL 2 RL OWL 2 EL Complete EL++ OWL 2 QL In AC 0 DL-Lite 10 http://streamreasoning.org/sr4ld2013

  11. OWL 2 EL A (near maximal) fragment of OWL 2 such that • • Satisfiability checking is in PTime ( PTime-Complete ) • Data complexity of query answering also PTime-Complete Based on EL family of description logics [Baader et al. • 2005] Can exploit saturation based reasoning techniques • • Computes complete classification in “one pass” • Computationally optimal (PTime for EL) • Can be extended to Horn fragment of OWL DL [Kazakov 2009] 11 http://streamreasoning.org/sr4ld2013

  12. Saturation-based Technique (basics) § Normalise ontology axioms to standard form: § Saturate using inference rules: § Extension to Horn fragment requires (many) more rules 12 http://streamreasoning.org/sr4ld2013

  13. Saturation-based Technique (basics) Example: 13 http://streamreasoning.org/sr4ld2013

  14. Saturation-based Technique (basics) Example: 14 http://streamreasoning.org/sr4ld2013

  15. Saturation-based Technique (basics) Example: 15 http://streamreasoning.org/sr4ld2013

  16. OWL 2 QL § A (near maximal) fragment of OWL 2 such that • Data complexity of conjunctive query answering in AC 0 § Based on DL-Lite family of description logics [Calvanese et al. 2005; 2006; 2008] § Can exploit query rewriting based reasoning technique • Data storage and query evaluation can be delegated to standard RDBMS • Novel technique to prevent exponential blowup produced by rewritings [Kontchakov et al. 2010, Rosati and Almatelli 2010] • Can be extended to more expressive languages (beyond AC 0 ) by delegating query answering to a Datalog engine [Perez-Urbina et al. 2009] 16 http://streamreasoning.org/sr4ld2013

  17. Query Rewriting Technique (basics) § Given ontology O and query Q , use O to rewrite Q as Q 0 s.t., for any set of ground facts A : • ans( Q , O , A ) = ans( Q 0 , ; , A ) § Use (GAV) mapping M to map Q 0 to SQL query O M Q 0 Map SQL Ans A Q Rewrite 17 http://streamreasoning.org/sr4ld2013

  18. Approximate Reasoning in OWL 2 DL § Idea: to compile a source ontology O (in more expressive L S ) into its upper/lower bound (in less expressive L T ) § Entailment set ES(O, L T ) of O in L T • The set of all L T axioms that are entailed by O under N C , N P and N I M st M wk M 18 http://streamreasoning.org/sr4ld2013

  19. Semantic Approximation [Pan and Thomas , 2007] § Strongest weaker approximation for QL ES(O, DL-Lite core ) of an OWL2 DL O is finite and unique. § Theorem 1: Given an ontology O, a conjunctive query q(X) and an evaluation [X → S], if ES(O, DL-Lite core ) |= q [X → S] , then O |= q [X → S] . § Theorem 2: Given an ontology O S , a database- style conjunctive query q(X) without non- distinguished variables and an evaluation [X → S], ES(O S , DL-Lite core ) |= q [X → S] iff O S |= q [X → S] . Q O ES(O, L T ) è è 19 http://streamreasoning.org/sr4ld2013

  20. Syntactic Approximate Reasoning [Ren et al, 2010] § Syntactic approximation from OWL2 DL to OWL2 EL • Minor syntactic gap results in major complexity difference • Using approximation to bridge the gap DL ¡ROQ ¡(large ¡subset ¡of ¡OWL2 ¡DL) ¡ DL ¡EL++ ¡(large ¡subset ¡of ¡OWL2 ¡EL) ¡ N2EXPTIME-­‑complete ¡ PTIME-­‑complete ¡ 20 http://streamreasoning.org/sr4ld2013

  21. Example: Syntactic Approximations Represent non-OWL2-EL concepts with fresh named § concepts • E.g., ∀ r.C subClassOf D è A ∀ r.C subClassOf D Maintain semantic relations for these named concepts § • complementary relations • cardinality relations Additional tractable completion Rules (on top of the EL § ones), e.g. • Handling complement E.g. B subClassOf C => ¬ C subClassOf ¬ B – X1 X2 ALL ALL A Some Some D A D r B C r nB nC B C 21 http://streamreasoning.org/sr4ld2013

  22. Evaluation: Syntactic Approximations 22 http://streamreasoning.org/sr4ld2013

  23. Agenda 1. OWL Reasoning with LOD (30m) 2. OWL Stream Reasoning with LOD (40m) 3. Hands-on session (20m) 23 http://streamreasoning.org/sr4ld2013

  24. LOD Streams § Two streams [Ren and Pan, 2011] § … • to-erase stream • to-add stream A LOD stream O[0,n] is a § sequence of classical ontologies O(0), O(1), …, O(n): • O(0) is the initial ontology • Er(i) axioms to erase from O(i) • Ad(i) axioms to add into O(i) • O(i+1) = O(i) U Ad(i) \Er(i) O(2) O(0) O(1) Key task § time • Answer a set of monitoring queries at each snapshot ontology O(i) http://streamreasoning.org/sr4ld2013 24

  25. Can We Learn from Existing Work? § The DRed (Delete and Re-derive) approach [Volz et. al. 2005] • Maintaining the materialisation of the knowledge base • Over-delete impacted entailments • Re-derive impacted entailments • Derive new entailments § Key techniques • Delete: justification • Re-derive: incremental reasoning 25 http://streamreasoning.org/sr4ld2013

  26. Justification: Key Enabler for Delete Justification § • Given an ontology O and a reasoning result rs • A justification J(rs) is a minimal subset of O that imply rs • There could be multiple justifications Challenges : § • Computing one justification for OWL2-DL is costly • Computing all justifications is NP-complete even for OWL2 tractable profiles § One justification at a time is needed • If the current justification J(rs) and Er(i) overlap • then rs should be removed as well http://streamreasoning.org/sr4ld2013

  27. Truth Maintenance System ¡ A directed graph § Nodes: axioms / entailments § Edges: derivation relations among axioms / entailments § All entailments are reachable from their justifications Easy to identify impacted entailments ▪ O(1) 27 http://streamreasoning.org/sr4ld2013

  28. Delete and Re-derive with TMS Erasing § • Remove all nodes reachable from the erased axioms • Removing all corresponding edges Adding § • Adding added axioms as new nodes into the graph • Inferring new results • Establishing new edges O(2) 28 http://streamreasoning.org/sr4ld2013

  29. Key Challenges § Q1: How to efficiently perform reasoning and compute justifications? § - Q1.1 tractable profiles such as OWL2 EL § - Q1.2 OWL2 DL § Q2: How to perform incremental reasoning • based on justifications 29 http://streamreasoning.org/sr4ld2013

Recommend


More recommend