May 25, 2009 May 25, 2009 FINNISH- -JAPANESE WORKSHOP JAPANESE WORKSHOP FINNISH ON FUNCTIONAL MATERIALS ON FUNCTIONAL MATERIALS Espoo and Helsinki, Finland Espoo and Helsinki, Finland Status of Photonics Polymers for “Fiber to the Display” Faculty of Science and Technology, Keio University Faculty of Science and Technology, Keio University JST ERATO/SORST JST ERATO/SORST Yasuhiro Koike Yasuhiro Koike
Heterogeneous Structure Polymer Lightwave
Correlation Length mm nm µm Å (10 -3 ) (10 -9 ) (10 -6 ) (10 -10 ) Absorption Refraction Polarization Scattering Emission Reflection + - Absorption Emission Highly Scattering High Speed Graded-Index High-Power Optical Fiber Zero-Birefringence Optical Transmission Polymer Optical Fiber Amplifier and Laser Polymer (HSOT) Polymer Rhodamine 6G-doped polymer PMMA Eu Chelate-doped polymer PMMA/BzMA PMMA-DPP Zero absorption Loss Polymer
Ray Trajectory Ray Trajectory Comparison of Step-Index Plastic Optical Fiber (SI POF) and Graded-Index Plastic Optical Fiber (GI-POF).
High-Speed GI Plastic Optical Fiber
5000 PMMA -base 4500 Perdeuterated PMMA 4000 -base 3500 Perfluorinated polymer-base 3000 2500 2000 1500 1000 500 0 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 ( μ m) Wavelength Total Attenuation Spectra of GI POFs.
CYTOP(Perfluoro butenyl vinyl ether) -Asahi Glass Co.- The material for commercial GI-POF (Lucina) Tg: ~ 108 ℃ CF 2 CF CF CF 2 O CF 2 C polymer F 2 F 2 C CF O CF 2 CF 2 CF CF 2 monomer
100G 全フッ素化ポリマー系 GI 型 POF PF polymer based GI-POF 石英系マルチモード ファイバー 10G Bit Rate Silica based multimode fiber 1G 0.4 0.6 0.8 1.0 1.2 1.4 1.6 ( μ m) 波長 Wavelength (µ m) Calculated bandwidth potential of PF polymer based GI-POF compared with that of silica based MMF.
Development of data rate achieved by POF links 1400 1Gbps•1000m@850nm 2.5Gbps•450m@1300nm Asahi glass & Eindhoven Univ. Tech. Keio Univ. Mitsubishi Rayon, 1200 Eindhoven Univ. Tech. Asahi glass & Fujitsu 4Gbps•300m@850nm 12Gbps•100m@850nm 11Gbps•100m@1300nm 1000 Keio Univ., JST Asahi glass & Lucent Technologies & Asahi glass, 10Gbps ・ 100m@850nm 2.5Gbps•200m@1300nm Preform Method Keio Univ. & Asahi glass & Fujitsu 800 First extrusion process 5Gbps•140m@1300nm Keio Univ., Asahi glass, Asahi glass, Chromis, Keio Univ. & Eindhoven Univ. Tech. 600 2.5Gbps•200m@650nm 531Mbps•100m@650nm Keio Univ., Mitsubishi Rayon, Essex Univ. NEC & Eindhoven Univ. Tech. 400 1Gbps•30m@670nm IBM & Keio Univ. 200 1Gbps•30m@670nm IBM & Keio Univ. 0 1990 1995 2000 2005 2010 Year Year
R&D Project of Polymer Devices for Constructing Next-Generation FTTH (METI, 2004-2006) Preform Method Extrusion Process Hopper for Core Polymer Hopper for Clad Polymer Preform
A New Co-Extrusion Tower Hopper for Core and Clad Polymer Diffusion Zone Control Panel
Correlation Length mm nm µm Å (10 -3 ) (10 -9 ) (10 -6 ) (10 -10 ) Absorption Refraction Polarization Scattering Emission Reflection + - Absorption Emission Highly Scattering High Speed Graded-Index High-Power Optical Fiber Zero-Birefringence Optical Transmission Polymer Optical Fiber Amplifier and Laser Polymer (HSOT) Polymer Rhodamine 6G-doped polymer PMMA Eu Chelate-doped polymer PMMA/BzMA PMMA-DPP Zero absorption Loss Polymer
Proposal of Highly Scattered Optical Transmission (HSOT) Polymer
Highly Scattering Optical Transmission Highly Scattering Optical Transmission (HSOT) Polymer Polymer (HSOT) Laser Beam μ m 1~10 μ m 1~10 (A) PMMA (A) PMMA Laser Beam (B) HSOT polymer (B) HSOT polymer Scatterers Scatterers (FIG.1.1, p.11) (FIG.1.1, p.11)
(A) Conventional backlighting system (A) Conventional backlighting system Collection sheet (BEF) Diffusion sheet Lamp reflector Reflection sheet Lamp Transparent Transparent Printed dot pattern light guide light guide (B) HSOT backlighting system (B) HSOT backlighting system Prism sheet Prism sheet HSOT polymer HSOT polymer
HSOT and conventional HSOT and conventional HSOT and conventional backlights backlights backlights 56mm 56mm Lamp Lamp 44mm 44mm 5674 cd/m 2 3072 cd/m 2 HSOT Conventional HSOT Conventional backlight backlight backlight backlight
Is General Concept of Light Scattering Always True? Y B e l u l l i o s w h i s h H S O T l i g h t p i p e Color dispersion due to general light scattering phenomenon
Photograph of Sunset
Mie scattering theory Mie scattering theory Mie scattering theory ( ) α θ = λ + π 2 2 I ( , ) i i / 8 0 deg. 1 2 α = 69.2 ) ( ) ∞ 2 ( ∑ α = + 2 + 2 K ( ) 2 n 1 a b α = 11.5 α n n 2 = 1 n α = 1.7 ψ α ψ α − ψ α ψ α ( ) ' ( m ) m ( m ) ' ( ) = n n n n a ζ α ψ α − ψ α ζ α n ( ) ' ( m ) m ( m ) ' ( ) n n n n ψ α ψ α − ψ α ψ α m ( ) ' ( m ) ( m ) ' ( ) = n n n n b ζ α ψ α − ψ α ζ α n m ( ) ' ( m ) ( m ) ' ( ) n n n n 2 ⎧ ⎫ ∞ + θ θ ( 1 ) ( 1 ) 90 deg. 2 n 1 P (cos ) dP (cos ) ∑ = + ⎨ ⎬ n n i a b + θ θ 1 n n ⎩ ⎭ n ( n 1 ) sin d = n 1 2 ⎧ ⎫ + θ θ ∞ ( 1 ) ( 1 ) 2 n 1 P (cos ) dP (cos ) ∑ = + ⎨ ⎬ n n i b a + θ θ 2 n n ⎩ ⎭ n ( n 1 ) sin d = n 1 α = π λ 2 r /
Scattering Efficiency (435, 545, 615nm mean three peaks in spectrum of a cold fluorescent lamp.) 4 Scattering efficiency (A) 3 2 435nm 545nm 1 (B) 615nm 0 0 3 6 9 12 15 Particle diameter / μ m Observation result HSOT polymer Transmitting Camera Scattering (B) (A) Fluorescent lamp transmitting
Color Dispersion on HSOT Backlights 9000 Color temperature (K) 8000 7000 6000 5000 0 10 20 30 40 50 60 70 Distance from lamp (mm) Y B e l u l l e o White w Not optimized HSOT Not optimized HSOT Optimized HSOT Optimized HSOT
HSOT Polymer Products Notebook PCs Various Mobile Devices Notebook PCs Various Mobile Devices Mobile phones SONY Vaio Note series PDA Panasonic Let’s Note series Pocket TV TOSHIBA Dynabook series Samsung, Dell etc.
Correlation Length mm nm µm Å (10 -3 ) (10 -9 ) (10 -6 ) (10 -10 ) Absorption Refraction Scattering Polarization Emission Reflection + - Absorption Emission Highly Scattering High Speed Graded-Index High-Power Optical Fiber Zero-Birefringence Optical Transmission Polymer Optical Fiber Amplifier and Laser Polymer (HSOT) Polymer Rhodamine 6G-doped polymer PMMA Eu Chelate-doped polymer PMMA/BzMA PMMA-DPP Zero absorption Loss Polymer
Advantage of zero- -birefringence optical polymers birefringence optical polymers Advantage of zero Flexibility Birefringence Light weight Low cost ・ Solvent Casting ・ ・・・ Low birefringence, Solvent Casting ・・・ Low birefringence, High cost. High cost. Zero-birefringence polymers ・ Extrusion processing ・・・ High speed, Low cost and zero-birefringence.
Changing in polarization state olarization state Changing in p through a birefringent medium through a birefringent medium Retardation y y Input Output Polarization Polarization y y ϕ z x x x x Figure Polarization property in a birefringent medium.
Our proposal of compensating orientational orientational Our proposal of compensating Our proposal of compensating orientational birefringence of polymers birefringence of polymers birefringence of polymers Anisotropic molecule dopant method Random copolymerization method Polarizability ellipsoid of monomer unit Polarizability ellipsoid Positive (+) birefringence monomer of anisotropic molecule Negative(-) birefringence monomer Random copolymerization Drawing Zero-birefringence copolymer MMA / trans -stilbene = 100 / 3 (wt./wt.) MMA / BzMA = 82 / 18 (wt./wt.) Typical dopant dopant Typical C H C H
Injection molded samples Injection molded samples Injection molded samples (a) PMMA (b) MMA/BzMA=82/18 (wt./wt.) polarizer analyzer (c) PMMA- trans- stilbene (3 wt.%)
Photoelastic Birefringence Photoelastic Birefringence Stress is added n ⊥ Polarizers n // // Stress is released Δ n = n // - n ⊥ c : Photoelastic Coefficient = c ・Δσ Δσ: Stress
Components of Zero- -Zero Polymers Zero Polymers Components of Zero Components of Zero-Zero Polymers Monomers CH 3 CH 3 CH 3 OB : Negative OB : Positive OB : Positive CH 2 C CH 2 C CH 2 C PB : Positive PB : Negative PB : Negative C O C O C O O CH 2 O CH 2 CF 3 O CH 3 Methyl methacrylate 2,2,2-Trifluoroethyl Benzyl methacrylate (MMA) methacrylate (3FMA) (BzMA) Anisotropic Dopant Ternary Copolymers OB : Positive PB : Positive # OB: Orientational Birefringence PB: Photoelastic Birefringence trans -stilbene Binary Copolymers Containing an Anisotropic Dopant
Recommend
More recommend