star european conference 2011 noordwijk march 22 23 2011
play

STAR European Conference 2011 Noordwijk, March 22- 23, 2011 Thermal - PowerPoint PPT Presentation

STAR European Conference 2011 Noordwijk, March 22- 23, 2011 Thermal Management of a Turbocharger for Unsteady Operation Dr. Fabiano Bet Dr. Gerald Seider Company Profile Consulting- & Engineering Services Simulation and Analysis of


  1. STAR European Conference 2011 Noordwijk, March 22- 23, 2011 Thermal Management of a Turbocharger for Unsteady Operation Dr. Fabiano Bet Dr. Gerald Seider

  2. Company Profile Consulting- & Engineering Services Simulation and Analysis of complex fluid flow and heat transfer systems for engineering and industrial applications 3D CFD/CHT Analysis • Vehicle Thermal Management • Engine Thermal Management • Electronics & Battery Thermal Management • Heat Exchanger Thermal Analysis 1D System Analysis • Turbomachinery Flow and Thermal Analysis and more … GT-SUITE InDesA GmbH  Anton-Ditt-Bogen 27  D-80939 München  Phone +49 (89) 552 7978-10  Fax +49 (89) 552 7978-29  www.InDesA.de

  3. Turbocharger Thermal Management of a Turbocharger InDesA GmbH 18.03.2010 page 3 Motivation Complete flow and thermal analysis of a turbocharger:  Compressor flow  Compressor flow  Turbine flow  Turbine flow  Coolant flow  Coolant flow  Oil flow  Oil flow  Structure heat fluxes  Structure heat fluxes  Radiation to environment  Radiation to environment  Flow driven rotating assembly  Flow driven rotating assembly

  4. Turbocharger Thermal Management of a Turbocharger InDesA GmbH 18.03.2010 page 4 Motivation Motivation: Thermal reliability of materials → Materials selection, durability, costs Radiation trough turbocharger surface → Thermal damaging of adjacent parts; → Heat shields Oil coking in the slide bearing → Oil damaging, bearing damaging; → Cooling concepts Compression- and Flow loss in the compressor → temperature increase in charging air; → dimensioning intercooler → Influencing local speed of sound and Mach number → Influencing acoustic transmission → Influencing the compressor filling limits.

  5. Turbocharger Thermal Management of a Turbocharger InDesA GmbH 18.03.2010 page 5 Heat Fluxes on Turbocharger Compressor Housing Water Jacket Turbine Housing · Q Air · · Q Convective Q Exhoust Gas · Q Radiation · Turbine Q Cool. Compressor · Q Oil · · Q Air Q Exhoust Diffusor Journal Bearing Labyrinth Seal · Q Oil Oil Chamber · Q Cool.

  6. Turbocharger Thermal Management of a Turbocharger InDesA GmbH 18.03.2010 page 6 Model Description Exhaust Manifold Exhaust Manifold Coupled with Compressor Outflow Compressor Outflow: Time Dependent Pressure Outlet Compressor Housing Heat Shield Turbine Outflow: Compressor Inflow: Turbine Housing Mesh: 14 · 10 6 Volume Cells Pressure Outlet Stagnation Pressure and Polyhedral with 4 Prism Layers Temperature Oil; Coolant: 24 Regions Inflow: Mass flow and Temperature 7 Physics Continua Outflow: Pressure Outlet - Air  Compressible, Ideal Gas - Exhaust Gas  Compressible, Ideal Gas - Coolant  Temp. dependent property - Oil  Temp. dependent property - Steel  Temp. dependent property - Alloy  Temp. dependent property - Brass  Temp. dependent property

  7. Turbocharger Thermal Management of a Turbocharger InDesA GmbH 18.03.2010 page 7 Mesh details

  8. Turbocharger Thermal Management of a Turbocharger InDesA GmbH 18.03.2010 page 8 Methodology 1D GT-Power Engine Model Delivers Time Dependent: Intake Pressure Exhaust Mass Flow Exhaust Temperature Intake Pressure Exhaust Temperature Exhaust Mass Flow 3D StarCCM+ turbocharger Model: Predicts Time Dependent: Air Mass Flow Turbine Rotating Rate Environment Temperature Distribution on Manifold and Turbocharger Thermal Stress Environment

  9. Turbocharger Thermal Management of a Turbocharger InDesA GmbH 18.03.2010 page 9 Fluid-Structure Coupling Mass Flow in Exhaust Manifold: Time Dependent Turbocharger Rotating Rate: Time Dependent Where:  = Angular Acceleration J = Momentum of Inertia

  10. Turbocharger Thermal Management of a Turbocharger InDesA GmbH 18.03.2010 page 10 Boundary Conditions Cyl. #1 Cyl. #2 Cyl. #3 Firing Order: 1; 5; 4; 8; 2; 3; 6; 7 (assumed) Cyl. #4 From Steady State Solution, the fuel mass flow is Temperature (°C) assumed to increase linearly: Fuel Mass Flow Mass Flow (Kg/s) Time Time

  11. Turbocharger Thermal Management of a Turbocharger InDesA GmbH 18.03.2010 page 11 Dynamic Result: Acceleration of TC Turbine Torque Compressor Torque Resultant Torque Torque (N/m) Angular Acceleration (rad/s ² ) Rotation Rate (rad/s) Angular Acceleration Rotating Rate Time (s)

  12. Turbocharger Thermal Management of a Turbocharger InDesA GmbH 18.03.2010 page 12 Dynamic Result: Acceleration of TC Heat Shields: Incident Radiation: = 862 W Average Temperature = 136 °C Solid temperature distribution

  13. Turbocharger Thermal Management of a Turbocharger InDesA GmbH 18.03.2010 page 13 Dynamic Result: Acceleration of TC Gas and Air Temperature @ steady condition: Gas and Air Temperature after acceleration: Rotation Rate = 21500 rpm Rotation Rate = 107370 rpm Average Exhaust Gas Temp. = 672 °C Average Exhaust Gas Temp. = 549 °C Average Exhaust Mass Flow = 0,02315 Kg/s Average Exhaust Mass Flow = 0,1448 Kg/s Time

  14. Turbocharger Thermal Management of a Turbocharger InDesA GmbH 18.03.2010 page 14 Dynamic Result: Acceleration of TC

  15. Turbocharger Thermal Management of a Turbocharger InDesA GmbH 18.03.2010 page 15 Dynamic Result: Acceleration of TC Exhaust-Outlet mass flow Air mass flow Fuel mass Flow Exhaust mass flow Mass Flow (Kg/s) Mass Flow (Kg/s) Time (s)

  16. Turbocharger Thermal Management of a Turbocharger InDesA GmbH 18.03.2010 page 16 Dynamic Result: Acceleration of TC Power (W) Compressor Power Turbine Power Time (s)

  17. Turbocharger Thermal Management of a Turbocharger InDesA GmbH 18.03.2010 page 17 Dynamic Result: Acceleration of TC Environment 23 W 194 W 9 W 775 W 907 W Coolant: 7 W +907 W Housing 117 W Compress Turbine- or- housing 17 W 22 W housing 5 W Wastegate Bearing 56 W Compres Turbine sor 35 W Oil: +91 W 7 W (Trough shaft) 974 W 297 W 94 W 7 W 2 W 20 W Air: +2920 W Exhaust: -4112 W 2819 W (Mech. Power)

  18. Thank You For attention Turbocharger: Thermal analysis InDesA GmbH  Anton-Ditt-Bogen 27  D-80939 München  Phone +49 (89) 552 7978-0  Fax +49 (89) 552 7978-29  www.InDesA.de

Recommend


More recommend