stabilization of quasistatic evolution of elastoplastic
play

Stabilization of quasistatic evolution of elastoplastic systems - PowerPoint PPT Presentation

Stabilization of quasistatic evolution of elastoplastic systems subject to periodic loading Oleg Makarenkov Department of Mathematical Sciences University of Texas at Dallas in cooperation with Ivan Gudoshnikov A parallel network of


  1. Stabilization of quasistatic evolution of elastoplastic systems subject to periodic loading Oleg Makarenkov Department of Mathematical Sciences University of Texas at Dallas in cooperation with Ivan Gudoshnikov

  2. A parallel network of elastoplastic springs − c + a 1 [ c , ] ξ 1 ξ 2 ξ 3 r 1 ( t ) 1 1 1 2 3 ( i 1 , j 1 ) = (1,2) f 2 ( t ) f 3 ( t ) ( i 2 , j 2 ) = (4,5) − c − c − c − c + + + + a 2 a 3 a 4 a 5 ξ 4 ξ 5 ξ 6 ξ 7 [ c , ] [ c , ] [ c , ] [ , ] f 6 ( t ) c 5 6 7 4 4 4 ( i 3 , j 3 ) = (5,1) 2 2 3 3 5 5 ( i 4 , j 4 ) = (1,6) − c − c + + a 7 a 6 ξ 8 [ c , ] [ c , ] f 8 ( t ) f 4 ( t ) f 5 ( t ) 8 7 7 ( i 5 , j 5 ) = (7,3) 6 6 f 7 ( t ) ( i 6 , j 6 ) = (5,8) − c + a 8 [ c , ] l 2 ( t ) 8 8 ( i 7 , j 7 ) = (6,7) ( i 8 , j 8 ) = (8,6) − c + a 9 [ c , ] 9 9 ( i 9 , j 9 ) = (4,7) ξ spring stress Elastoplastic spring: + c 1 − c + a 1 [ c , ] ξ 1 1 1 1 2 − c 1 elastic component e 1 plastic component p 1 (relaxed length) spring length

  3. A parallel network of elastoplastic springs − c + a 1 [ c , ] ξ 1 ξ 2 ξ 3 r 1 ( t ) 1 1 1 2 3 ( i 1 , j 1 ) = (1,2) f 2 ( t ) f 3 ( t ) ( i 2 , j 2 ) = (4,5) − c − c − c − c + + + + a 2 a 3 a 4 a 5 ξ 4 ξ 5 ξ 6 ξ 7 [ c , ] [ c , ] [ c , ] [ , ] f 6 ( t ) c 5 6 7 4 4 4 ( i 3 , j 3 ) = (5,1) 2 2 3 3 5 5 ( i 4 , j 4 ) = (1,6) − c − c + + a 7 a 6 ξ 8 [ c , ] [ c , ] f 8 ( t ) f 4 ( t ) f 5 ( t ) 8 7 7 ( i 5 , j 5 ) = (7,3) 6 6 f 7 ( t ) ( i 6 , j 6 ) = (5,8) − c + a 8 [ c , ] l 2 ( t ) 8 8 ( i 7 , j 7 ) = (6,7) ( i 8 , j 8 ) = (8,6) − c + a 9 [ c , ] 9 9 ( i 9 , j 9 ) = (4,7) ξ spring stress >  = p 0 Elastic deformatio n : s Ae + c 1 ∈  = = Plastic deformatio n : p N ( s )   p 0 p 0 C ∞ = +  [ 0 , ), if s c , <  p 0 = − + × 1  − C [ c , c ] ... c = ∈ − + 1 1  N ( s ) { 0 }, if s ( c , c ), 1 − + × − + 1 1 [ c , c ] ... [ c , c ]  1 1 −∞ = − m m  ( , 0 ], if s c . spring length 1

  4. Initial system of variational inequalities − c + a 1 [ c , ] ξ 1 ξ 2 ξ 3 l 1 ( t ) 1 1 1 2 3 ( i 1 , j 1 ) = (1,2) f 2 ( t ) f 3 ( t ) ( i 2 , j 2 ) = (4,5) − c − c − c − c + + + + a 2 a 3 a 4 a 5 ξ 4 ξ 5 ξ 6 ξ 7 [ c , ] [ c , ] [ c , ] [ , ] f 6 ( t ) c 5 6 7 4 4 4 ( i 3 , j 3 ) = (5,1) 2 2 3 3 5 5 ( i 4 , j 4 ) = (1,6) − c − c + + a 7 a 6 ξ 8 [ c , ] [ c , ] f 8 ( t ) f 4 ( t ) f 5 ( t ) 8 7 7 ( i 5 , j 5 ) = (7,3) 6 6 f 7 ( t ) ( i 6 , j 6 ) = (5,8) − c + a 8 [ c , ] l 2 ( t ) 8 8 ( i 7 , j 7 ) = (6,7) ( i 8 , j 8 ) = (8,6) − c + a 9 [ c , ] 9 9 ( i 9 , j 9 ) = (4,7) ξ = Elastic deformatio n : s Ae , ∈  Plastic deformatio n : p N ( s ), C + ∈ ℜ n Geometric constraint : e p D , + = T Enforced constraint : R ( e p ) l ( t ), + + + + + + = 1 m 1 q Static balance : s ... s r ... r f ( t ) 0 .

  5. Tension/compression law − c + a 1 [ c , ] ξ 1 ξ 2 ξ 3 l 1 ( t ) 1 1 1 2 3 ( i 1 , j 1 ) = (1,2) f 2 ( t ) f 3 ( t ) ( i 2 , j 2 ) = (4,5) − c − c − c − c + + + + a 2 a 3 a 4 a 5 ξ 4 ξ 5 ξ 6 ξ 7 [ c , ] [ c , ] [ c , ] [ , ] f 6 ( t ) c 5 6 7 4 4 4 ( i 3 , j 3 ) = (5,1) 2 2 3 3 5 5 ( i 4 , j 4 ) = (1,6) − c − c + + a 7 a 6 ξ 8 [ c , ] [ c , ] f 8 ( t ) f 4 ( t ) f 5 ( t ) 8 7 7 ( i 5 , j 5 ) = (7,3) 6 6 f 7 ( t ) ( i 6 , j 6 ) = (5,8) − c + a 8 [ c , ] l 2 ( t ) 8 8 ( i 7 , j 7 ) = (6,7) ( i 8 , j 8 ) = (8,6) − c + a 9 [ c , ] 9 9 ( i 9 , j 9 ) = (4,7) ξ = Elastic deformatio n : s Ae , ∈  Plastic deformatio n : p N ( s ), C + ∈ ℜ n Geometric constraint : e p D , + = T Enforced constraint : R ( e p ) l ( t ), + + + + + + = 1 m 1 q Static balance : s ... s r ... r f ( t ) 0 .

  6. Tension/compression law − c + a 1 [ c , ] ξ 1 ξ 2 ξ 3 l 1 ( t ) 1 1 1 2 3 ( i 1 , j 1 ) = (1,2) f 2 ( t ) f 3 ( t ) ( i 2 , j 2 ) = (4,5) − c − c − c − c + + + + a 2 a 3 a 4 a 5 ξ 4 ξ 5 ξ 6 ξ 7 [ c , ] [ c , ] [ c , ] [ , ] f 6 ( t ) c 5 6 7 4 4 4 ( i 3 , j 3 ) = (5,1) 2 2 3 3 5 5 ( i 4 , j 4 ) = (1,6) − c − c + + a 7 a 6 ξ 8 [ c , ] [ c , ] f 8 ( t ) f 4 ( t ) f 5 ( t ) 8 7 7 ( i 5 , j 5 ) = (7,3) 6 6 f 7 ( t ) ( i 6 , j 6 ) = (5,8) − c + a 8 [ c , ] l 2 ( t ) 8 8 ( i 7 , j 7 ) = (6,7) ( i 8 , j 8 ) = (8,6) − c + a 9 [ c , ] 9 9 ( i 9 , j 9 ) = (4,7) ξ = Elastic deformatio n : s Ae , ∈  Plastic deformatio n : p N ( s ), C + ∈ ℜ n Geometric constraint : e p D , + = T Enforced constraint : R ( e p ) l ( t ), + + + + + + = 1 m 1 q Static balance : s ... s r ... r f ( t ) 0 .

  7. Tension/compression law l 1 ( t ) − c + a 1 [ c , ] ξ 1 ξ 2 ξ 3 1 1 1 2 3 ( i 1 , j 1 ) = (1,2) f 2 ( t ) f 3 ( t ) ( i 2 , j 2 ) = (4,5) − c − c − c − c + + + + a 2 a 3 a 4 a 5 ξ 4 ξ 5 ξ 6 ξ 7 [ c , ] [ c , ] [ c , ] [ , ] f 6 ( t ) c 5 6 7 4 4 4 ( i 3 , j 3 ) = (5,1) 2 2 3 3 5 5 ( i 4 , j 4 ) = (1,6) − c − c + + a 7 a 6 ξ 8 [ c , ] [ c , ] f 8 ( t ) f 4 ( t ) f 5 ( t ) 8 7 7 ( i 5 , j 5 ) = (7,3) 6 6 f 7 ( t ) ( i 6 , j 6 ) = (5,8) − c + a 8 [ c , ] l 2 ( t ) 8 8 ( i 7 , j 7 ) = (6,7) e 7 + p 7 ( i 8 , j 8 ) = (8,6) − c + a 9 [ c , ] 9 9 ( i 9 , j 9 ) = (4,7) ξ = Elastic deformatio n : s Ae , For enforced constraint 1 : ∈  Plastic deformatio n : p N ( s ), ( e 4 + p 4 )+( e 7 + p 7 )+( e 5 + p 5 )-( e 1 + p 1 )= l 1 ( t ) C + ∈ ℜ n Geometric constraint : e p D , + = T Enforced constraint : R ( e p ) l ( t ), + + + + + + = 1 m 1 q Static balance : s ... s r ... r f ( t ) 0 .

  8. Static balance law − c + a 1 [ c , ] ξ 1 ξ 2 ξ 3 l 1 ( t ) 1 1 1 2 3 ( i 1 , j 1 ) = (1,2) f 2 ( t ) f 3 ( t ) ( i 2 , j 2 ) = (4,5) − c − c − c − c + + + + a 2 a 3 a 4 a 5 ξ 4 ξ 5 ξ 6 ξ 7 [ c , ] [ c , ] [ c , ] [ , ] f 6 ( t ) c 5 6 7 4 4 4 ( i 3 , j 3 ) = (5,1) 2 2 3 3 5 5 ( i 4 , j 4 ) = (1,6) − c − c + + a 7 a 6 ξ 8 [ c , ] [ c , ] f 8 ( t ) f 4 ( t ) f 5 ( t ) 8 7 7 ( i 5 , j 5 ) = (7,3) 6 6 f 7 ( t ) ( i 6 , j 6 ) = (5,8) − c + a 8 [ c , ] l 2 ( t ) 8 8 ( i 7 , j 7 ) = (6,7) ( i 8 , j 8 ) = (8,6) − c + a 9 [ c , ] 9 9 ( i 9 , j 9 ) = (4,7) ξ = Elastic deformatio n : s Ae , ∈  Plastic deformatio n : p N ( s ), C + ∈ ℜ n Geometric constraint : e p D , + = T Enforced constraint : R ( e p ) l ( t ), + + + + + + = 1 m 1 q Static balance : s ... s r ... r f ( t ) 0 .

  9. Static balance law − c + a 1 [ c , ] ξ 1 ξ 2 ξ 3 l 1 ( t ) 1 1 1 2 3 ( i 1 , j 1 ) = (1,2) f 2 ( t ) f 3 ( t ) ( i 2 , j 2 ) = (4,5) − c − c − c − c + + + + a 2 a 3 a 4 a 5 ξ 4 ξ 5 ξ 6 ξ 7 [ c , ] [ c , ] [ c , ] [ , ] f 6 ( t ) c 5 6 7 4 4 4 ( i 3 , j 3 ) = (5,1) 2 2 3 3 5 5 ( i 4 , j 4 ) = (1,6) − c − c + + a 7 a 6 ξ 8 [ c , ] [ c , ] f 8 ( t ) f 4 ( t ) f 5 ( t ) 8 7 7 ( i 5 , j 5 ) = (7,3) 6 6 f 7 ( t ) ( i 6 , j 6 ) = (5,8) − c + a 8 [ c , ] l 2 ( t ) 8 8 ( i 7 , j 7 ) = (6,7) ( i 8 , j 8 ) = (8,6) − c + a 9 [ c , ] 9 9 ( i 9 , j 9 ) = (4,7) ξ = Elastic deformatio n : s Ae , For node 2 : ∈  Plastic deformatio n : p N ( s ), - s 1 + r 1 + f 2 ( t )=0 C + ∈ ℜ n Geometric constraint : e p D , + = T Enforced constraint : R ( e p ) l ( t ), + + + + + + = 1 m 1 q Static balance : s ... s r ... r f ( t ) 0 .

  10. Moreau sweeping process = Elastic deformatio n : s Ae , ∈ + ∈ +  Plastic deformatio n : p N ( s ), e p U g ( t ) C { } + ∈ ℜ = ∈ ℜ = n n T Geometric constraint : e p D ( ), U x D ( ) : R x 0 ( ) + = = ξ T Enforced constraint : R ( e p ) l ( t ), g ( t ) D l ( t ) V − ⊥ = 1 V A U + ... + = − + ... + = − 1 q T 1 m T + ∈ Graph theory: r r D Rr s s D s e h ( t ) V = − T f ( t ) D h ( t ) + + + + + + = 1 m 1 q Static balance : s ... s r ... r f ( t ) 0 ( ) − = 1 ⊥ ⊂ ( ) h ( t ) A h ( t ) = ⊥ T n U Algebra : Ker D D R U − ∈  A ∈ = + − y N ( ) ( y )  c p N ( Ae ) y e h ( t ) g ( t ) − + − 1  ( A C h ( t ) g ( t ) V ) C + − + ∈ ∈ +  A  e p g ( t ) h ( t ) U  z N ( ) ( y ) y U − 1 + − A C h ( t ) g ( t ) + − ∈ = + + − e h ( t ) g ( t ) V z e p h ( t ) g ( t ) ∈ z ( 0 ) U

Recommend


More recommend