special functions differential equations fourier series
play

! Special Functions ! Differential Equations ! Fourier Series and - PowerPoint PPT Presentation

! Special Functions ! Differential Equations ! Fourier Series and Transforms ! Probability and Random Processes ! Linear System Analysis ME 437/537-Particle G. Ahmadi ME 437/537-Particle G. Ahmadi ( ) ( ) du t t Unit Step Unit Step


  1. ! Special Functions ! Differential Equations ! Fourier Series and Transforms ! Probability and Random Processes ! Linear System Analysis ME 437/537-Particle G. Ahmadi ME 437/537-Particle G. Ahmadi ( ) − ( ) du t t Unit Step Unit Step Dirac Delta Dirac Delta ⎧ ≥ ⎫ δ − = 1 t t 0 ( ) t t − = 0 ⎨ ⎬ u t t 0 Function Function Function Function dt < 0 ⎩ ⎭ 0 t t 0 u(t-t o ) δ (t-t o ) t o t o ME 437/537-Particle G. Ahmadi ME 437/537-Particle G. Ahmadi 1

  2. +∞ ( ) + ε ( ) ∫ ∫ t Error Error ( ) 2 δ − = δ − = 0 ∫ x t dt − = 2 t t dt t t dt 1 erf x e 0 0 − ∞ − ε t π Function Function 0 0 +∞ ( ) ( ) + ε ( ) ( ) ( ) ∫ ∫ t δ − = δ − = 0 f t t t dt f t t t dt f t ( ) ( ) ∞ 2 ∫ t dt = − = − 2 0 0 0 − ∞ − ε erfc x 1 erf x e t 0 π x ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ∫ ∞ t = = ∞ − = − δ − = − erf 0 0 erfc f t t t dt f t u t t erf x erf x 1 1 0 1 0 0 − − Exponential ( ) ∫ xt Exponential ∞ e ( ) ∫ ∞ t = e x [ ] ( ) 1 ( ) = E x dt δ − = δ − E x dt a t t t t Integrals n Integrals i t − 1 0 0 t a ME 437/537-Particle G. Ahmadi ME 437/537-Particle G. Ahmadi Linear First- Linear First -Order Order dy ( ) ( ) 2 d y dy + = + + = P x y Q x a by 0 dx 2 dx dx ∫ x ( ) + + = → x ( ) ∫ − 2 ( ) − m am b 0 Solve for m , m x P x dx P x dx ∫ = + 1 2 1 1 2 y ce e x Q x dx 0 1 1 1 0 = + m x m x ≠ = y c e c e m m Re al 1 2 2 1 ( ) 1 2 dy ( ) ∫ x = − − + = b ( x x ) b y Q x y e Q x dx 1 1 1 dx = = 0 = + m m m mx y e ( c c x ) 2 1 1 2 ME 437/537-Particle G. Ahmadi ME 437/537-Particle G. Ahmadi 2

  3. a 2 = + ( ) = − d y dy m 1 p qi p + + = Particular Solutions Particular Solutions a by R x 2 2 dx dx = − m 2 p qi 2 a = − q b m x m x e ( ) e ( ) 1 2 ∫ ∫ = − + − m x m x y e 1 R x dx e 2 R x dx 4 − − P m m m m 1 2 2 1 ( ) ( ) ∫ ∫ = − − − mx mx mx mx y xe e R x dx e xe R x dx P ( ) = + px px px y e c cos qx c sin qx e sin qx ( ) e cos qx ( ) ∫ ∫ − − = − px px y e R x cos qx dx e R x sin qx dx 1 2 P q q ME 437/537-Particle G. Ahmadi ME 437/537-Particle G. Ahmadi ⎛ ⎞ 2 ( ) dy y d y dy = + + = ⎜ ⎟ 2 F x ax by s x ⎝ ⎠ 2 dx dx dx x y ( ) dy dv y = v = − + + = m = + Ax m m 1 am b 0 Let x v Let Let Let x dx dx = ∫ dv = + + m m ln x c y A x A x ( ) 1 2 − 1 2 F v v ME 437/537-Particle G. Ahmadi ME 437/537-Particle G. Ahmadi 3

  4. ( ) ( ) + = ( ) 2 M x , y dx N x , y dy 0 d y dy + + β − = 2 2 2 2 x x x n y 0 2 dx dx ( ) ∂ ∂ ∂ ϕ 2 M N x , y = = With With ( ) ( ) ∂ ∂ ∂ ∂ = β + β y x x y Solutions y C J x C Y x Solutions 1 n 2 n ∂ ϕ ∂ ϕ = = N M ∂ ∂ ( ) ( ) y x J n β Y n β Bessel Bessel x x ( ) Functions Functions ϕ = x , y const ME 437/537-Particle G. Ahmadi ME 437/537-Particle G. Ahmadi ( ) ( ) = − − ∞ π π ⎛ ⎞ f x f x ( ) a n x n x ∑ = + + ⎜ ⎟ 0 f x a cos b sin ⎝ n n ⎠ 2 L L = n 1 π π ∞ ( ) ∑ n x 2 ( ) n x ∫ L = = f x b sin b f x sin dx π π 1 ( ) n x 1 ( ) n x n n ∫ L ∫ − L L = = L L 0 a f x cos dx b f x sin dx = n 1 n n − L L L L L L Fourier Exponential Series π Fourier Exponential Series ( ) ( ) n = − ω = Fourier Cosine Series Fourier Cosine Series f x f x n L ∞ ( ) ∑ 1 ( ) L = ω ∫ − = − ω π i x ∞ π i x f x c e ( ) 2 ( ) n x n c f x e dx a ∑ n x ∫ L n = = + 0 n f x a cos a f x cos dx n 2 L L n = −∞ n 2 L n L L 0 = n 1 ME 437/537-Particle G. Ahmadi ME 437/537-Particle G. Ahmadi 4

  5. π FES ∞ Fourier Integral Representation Fourier Integral Representation ( ) ∑ in x − < < FES FES L x L = f x c n e L ) ( ) = −∞ ( ) 1 + ∞ + ∞ n ( ∫ ∫ = ω − ′ ′ ′ ω i x x f x e f x d x d π − ∞ − ∞ 2 π in x 1 − ( ) ∫ − L = ′ c e L f x dx n 2 L L Fourier Transform (Exponential) Fourier Transform (Exponential) π π ) ( ) +∞ n ( ) 1 ∑∫ ( L ω = ∆ ω = Replacing = ω − ′ ′ ( ) +∞ ( ) i x x ∫ f x e f x dx − ω ′ ′ ′ n ω = i x for c n n f e f x d x − 2 L L L L − ∞ − ∞ + ∞ ( ) 1 ( ) ∫ = ω ω ω ∑ i x ∫ f x e f d → ∞ ∆ ω = ω L g n gd π − ∞ 2 ME 437/537-Particle G. Ahmadi ME 437/537-Particle G. Ahmadi ( ) ∞ ( ) ∫ ′ ′ ′ ω = ω ( ) f cos x f x d x ⎧ ⎫ c df + ∞ df x ( ) 0 ∫ ℑ = − ω = ω ω ⎨ ⎬ i x Fourier Cosine Fourier Cosine e dx i f ⎩ ⎭ ( ) 2 ∞ ( ) − ∞ Transform Transform ∫ dx dx = ω ω ω f x cos x f d π c 0 ( ) ∞ ( ) ∫ ω = ω ′ ′ ′ ⎧ ⎫ ⎧ ⎫ 2 n f sin x f x d x ( ) d f ( ) ( ) d f ℑ = ω ω s ℑ = − ω ω n ⎨ ⎬ 2 ⎨ ⎬ 0 f i f Fourier Sine Fourier Sine n 2 ⎩ ⎭ ⎩ ⎭ dx dx Transform ∞ Transform ( ) 2 ( ) ∫ = ω ω ω f x sin x f d π s 0 ME 437/537-Particle G. Ahmadi ME 437/537-Particle G. Ahmadi 5

  6. ( ) ( ) ω f f x 2 d f df ( ) + + = δ − − ∞ < < +∞ a bf x x x ( ) ( ) ω f + ω i x f x x e 0 0 2 dx dx 1 0 ( ) − ω δ x − i x e x 0 0 α − α 2 Taking Fourier Transform Taking Fourier Transform x e ω + α 2 2 ( ) ( ) ( ) ( ) +∞ ( ) ( ) ω ω ( ) ( ) ( ) ∫ = ξ − ξ ξ f x * f x f f x d f f − ω ω + ω ω + ω = − ω i x 2 1 2 1 2 − ∞ 1 2 f ai f b f e 0 [ ] ( ) ( ) ω π δ ω − ω + δ ω + ω cos x 0 0 0 ( ) ( ) α ω + α + β − α β 2 2 2 − ω ω − x 2 i x i x x ( ) e cos x e ( ) 1 + ∞ e ( ) 0 0 ∫ ω = ω − β − α 2 + α ω = ω 2 2 2 2 2 4 f f x d ( ) − ω + ω ⎡ α ⎤ α α + β π − ω + ω 2 2 2 4 b ia − ∞ 2 2 b ia − α x β + β ( ) e ⎢ cos x sin x ⎥ β ω − β − α 2 + α ω ⎣ ⎦ 2 2 2 2 2 4 ME 437/537-Particle G. Ahmadi ME 437/537-Particle G. Ahmadi ( ) ( ) F Y (y) ω f x f ( ) ( ) ⎡ ⎧ ⎫ ⎧ ⎫ ⎤ − α π ω + β ω − β 2 x 2 β 2 2 e cos x − + − ⎢ ⎨ ⎬ ⎨ ⎬ ⎥ exp exp α α α 1 2 2 ⎢ ⎥ 2 ⎣ ⎩ 4 ⎭ ⎩ 4 ⎭ ⎦ ⎧ ⎫ e α − 2 x 2 π ω 2 − ⎨ ⎬ exp α α 2 ⎩ 4 ⎭ ( ) n d ( ) i ω n δ x y n dx ( ) ⎧ ⎫ 2 ω < J 0 x ⎪ ⎪ 1 ( ) ( ) { } ⎨ ⎬ − ω 2 ≤ ≤ 1 = ≤ ⎪ ⎪ 0 F y 1 F y P Y y ⎩ 0 elsewhere ⎭ Y Y ME 437/537-Particle G. Ahmadi ME 437/537-Particle G. Ahmadi 6

  7. f Y (y) ( ) { } +∞ ( ) ( ) dF y Expected Expected ∫ = = = ( ) +∞ ( ) Y f y ∫ ∞ = = E Y Y yf y dy F 1 f y dy Y dy Y Y Y − ∞ Value Value − ∞ { ( ) } ( ) +∞ ( ) ( ) ∫ = = E g Y g Y g y f y dy Y − ∞ y Variance Variance { } ( ) { } { } ( ) ( ) ( ) ∫ y 2 2 < ≤ = = − σ = − = − 2 2 2 P y Y y f y dy F y F y E Y Y E Y Y 1 2 Y Y 2 Y 1 y Y 1 ME 437/537-Particle G. Ahmadi ME 437/537-Particle G. Ahmadi X(t) = ∫ Time ( ) 1 ( ) { ( ) } Time T ≈ X t X t dt E X t Averaging Averaging T 0 Autocorrelation Autocorrelation t ( ) { ( ) ( ) } 1 ( ) ( ) ∫ T τ = + τ = + τ R E X t X t X t X t dt xx T 0 { ( ) } +∞ ( ) { } ∫ = ( ) ( ) ( ) E X t xf x , t dx = = 2 2 R 0 E X t X t X − ∞ xx ME 437/537-Particle G. Ahmadi ME 437/537-Particle G. Ahmadi 7

Recommend


More recommend