sparse polynomial interpolation with arbitrary orthogonal
play

Sparse Polynomial Interpolation With Arbitrary Orthogonal - PowerPoint PPT Presentation

Sparse Polynomial Interpolation With Arbitrary Orthogonal Polynomial Bases Erdal Imamoglu Erich L. Kaltofen Zhengfeng Yang NC State University NC State University East China Normal University Duke University Raleigh, NC, USA Shanghai,


  1. Sparse Polynomial Interpolation With Arbitrary Orthogonal Polynomial Bases Erdal Imamoglu � Erich L. Kaltofen Zhengfeng Yang NC State University NC State University East China Normal University Duke University Raleigh, NC, USA Shanghai, China Raleigh-Durham, NC, USA

  2. 2 Outline 1. Chebyshev Polynomials 2. Problem Statement 3. Chebyshev Bases (With A Known Sparsity t ) 4. Deterministic Early Termination

  3. 3 Chebyshev Polynomials Let K be a field Chebyshev Polynomials of degree n Tchebyshev-1: T n ( x ) Chebyshev-2: U n ( x ) Chebyshev-3: V n ( x ) Chebyshev-4: W n ( x )

  4. 3 Chebyshev Polynomials Let K be a field Chebyshev Polynomials of degree n Tchebyshev-1: T n ( x ) Chebyshev-2: U n ( x ) Chebyshev-3: V n ( x ) Chebyshev-4: W n ( x ) T 0 ( x ) = 1 U 0 ( x ) = 1 V 0 ( x ) = 1 W 0 ( x ) = 1

  5. 3 Chebyshev Polynomials Let K be a field Chebyshev Polynomials of degree n Tchebyshev-1: T n ( x ) Chebyshev-2: U n ( x ) Chebyshev-3: V n ( x ) Chebyshev-4: W n ( x ) T 0 ( x ) = 1 T 1 ( x ) = x U 0 ( x ) = 1 U 1 ( x ) = 2 x V 0 ( x ) = 1 V 1 ( x ) = 2 x − 1 W 0 ( x ) = 1 W 1 ( x ) = 2 x + 1

  6. 3 Chebyshev Polynomials Let K be a field Chebyshev Polynomials of degree n Tchebyshev-1: T n ( x ) Chebyshev-2: U n ( x ) Chebyshev-3: V n ( x ) Chebyshev-4: W n ( x ) T 0 ( x ) = 1 T 1 ( x ) = x T n ( x ) = 2 xT n − 1 ( x ) − T n − 2 ( x ) U 0 ( x ) = 1 U 1 ( x ) = 2 x U n ( x ) = 2 xU n − 1 ( x ) − U n − 2 ( x ) V 0 ( x ) = 1 V 1 ( x ) = 2 x − 1 V n ( x ) = 2 xV n − 1 ( x ) − V n − 2 ( x ) W 0 ( x ) = 1 W 1 ( x ) = 2 x + 1 W n ( x ) = 2 xW n − 1 ( x ) − W n − 2 ( x ) for n ≥ 2

  7. 4 Problem Statement A black box for f ( x ) ∈ K [ x ] is given: β → � → a = f ( β )

  8. 4 Problem Statement A black box for f ( x ) ∈ K [ x ] is given: β → � → a = f ( β ) 1. If t (number of terms) is given, using 2 t evaluations write f ( x ) as t ∑ f ( x ) = c j T δ j ( x ) i. (Chebyshev-1 Basis) j = 1 t ∑ f ( x ) = c j U δ j ( x ) ii. (Chebyshev-2 Basis) j = 1 t ∑ iii. f ( x ) = c j V δ j ( x ) (Chebyshev-3 Basis) j = 1 t ∑ f ( x ) = c j W δ j ( x ) iv. (Chebyshev-4 Basis) j = 1 where c j � = 0 and 0 ≤ δ 1 < ··· < δ t

  9. 4 Problem Statement A black box for f ( x ) ∈ K [ x ] is given: β → � → a = f ( β ) 1. If t (number of terms) is given, using 2 t evaluations write f ( x ) as t ∑ f ( x ) = c j T δ j ( x ) i. (Chebyshev-1 Basis) j = 1 t ∑ f ( x ) = c j U δ j ( x ) ii. (Chebyshev-2 Basis) j = 1 t ∑ iii. f ( x ) = c j V δ j ( x ) (Chebyshev-3 Basis) j = 1 t ∑ f ( x ) = c j W δ j ( x ) iv. (Chebyshev-4 Basis) j = 1 where c j � = 0 and 0 ≤ δ 1 < ··· < δ t 2. If B ≥ t is given, interpolate f ( x ) with exactly t + B evaluations

  10. 5 Problem Statement: Previous results [Prony, 1795] → Interpolation in power basis [Bose, Chaudhuri, Hocquenghem, 1959] → Prony

  11. 5 Problem Statement: Previous results [Prony, 1795] → Interpolation in power basis [Bose, Chaudhuri, Hocquenghem, 1959] → Prony [Lakshman & Saunders, 1995] → Interpolation in Chebyshev-1 polynomials [Potts & Tasche, 2014] → Interpolation in Chebyshev-2 polynomials → Uses floating point arithmetic [Arnold & Kaltofen, 2015] → Interpolation in Chebyshev-1 polynomials → Reduction to power bases

  12. 5 Problem Statement: Previous results [Prony, 1795] → Interpolation in power basis [Bose, Chaudhuri, Hocquenghem, 1959] → Prony [Lakshman & Saunders, 1995] → Interpolation in Chebyshev-1 polynomials [Kaltofen & Lee, 2003] → Recovers unknown t from given a degree bound for f ( x ) [Potts & Tasche, 2014] → Interpolation in Chebyshev-2 polynomials → Uses floating point arithmetic [Arnold & Kaltofen, 2015] → Interpolation in Chebyshev-1 polynomials → Reduction to power bases

  13. 6 Chebyshev Bases (With A Known Sparsity t ) Reduction to power bases: Chebyshev-1: T n ( T m ( y )) = T mn ( y ) = T m ( T n ( y )) , ∀ m , n ∈ Z ≥ 0 y n + 1 � y + 1 � y n y = , ∀ n ≥ 0 T n 2 2

  14. 6 Chebyshev Bases (With A Known Sparsity t ) Reduction to power bases: Chebyshev-1: T n ( T m ( y )) = T mn ( y ) = T m ( T n ( y )) , ∀ m , n ∈ Z ≥ 0 y n + 1 � y + 1 � y n y = , ∀ n ≥ 0 T n (17 years) 2 2 � y + 1 � � � y − 1 1 = y n + 1 − y y n + 1 , ∀ n ≥ 0 Chebyshev-2: U n (17 Years) y 2

  15. 6 Chebyshev Bases (With A Known Sparsity t ) Reduction to power bases: Chebyshev-1: T n ( T m ( y )) = T mn ( y ) = T m ( T n ( y )) , ∀ m , n ∈ Z ≥ 0 y n + 1 � y + 1 � y n y = , ∀ n ≥ 0 T n (17 years) 2 2 � y + 1 � � � y − 1 1 = y n + 1 − y y n + 1 , ∀ n ≥ 0 Chebyshev-2: U n (17 Years) y 2 � y 2 + 1 � � � y + 1 1 y 2 = y 2 n + 1 + y 2 n + 1 , ∀ n ≥ 0 Chebyshev-3: V n y 2

  16. 6 Chebyshev Bases (With A Known Sparsity t ) Reduction to power bases: Chebyshev-1: T n ( T m ( y )) = T mn ( y ) = T m ( T n ( y )) , ∀ m , n ∈ Z ≥ 0 y n + 1 � y + 1 � y n y = , ∀ n ≥ 0 T n (17 years) 2 2 � y + 1 � � � y − 1 1 = y n + 1 − y y n + 1 , ∀ n ≥ 0 Chebyshev-2: U n (17 Years) y 2 � y 2 + 1 � � � y + 1 1 y 2 = y 2 n + 1 + y 2 n + 1 , ∀ n ≥ 0 Chebyshev-3: V n y 2 � y 2 + 1 � � � y − 1 1 y 2 = y 2 n + 1 − y 2 n + 1 , ∀ n ≥ 0 Chebyshev-4: W n y 2

  17. 7 Chebyshev Bases (With A Known Sparsity t ) t ∑ Chebyshev-2 Basis: Write f ( x ) as f ( x ) = c j U δ j ( x ) j = 1

  18. 7 Chebyshev Bases (With A Known Sparsity t ) t ∑ Chebyshev-2 Basis: Write f ( x ) as f ( x ) = c j U δ j ( x ) j = 1 Define � y + 1 � y − 1 t � � � � � � y − 1 y − 1 def y y ∑ g ( y ) = = f c j U δ j y 2 y 2 j = 1 t � � � � 1 y , 1 y δ j + 1 − ∑ = ∈ K c j y δ j + 1 y j = 1

  19. 7 Chebyshev Bases (With A Known Sparsity t ) t ∑ Chebyshev-2 Basis: Write f ( x ) as f ( x ) = c j U δ j ( x ) j = 1 Define � y + 1 � y − 1 t � � � � � � y − 1 y − 1 def y y ∑ g ( y ) = = f c j U δ j y 2 y 2 j = 1 t � � � � 1 y , 1 y δ j + 1 − ∑ = ∈ K c j y δ j + 1 y j = 1 � ω i + 1 � 1 � � � � ω i − 1 ω i a i = g ( ω i ) = = − g = − a − i for ω ∈ K f ω i ω i 2 Free evaluation: a 0 = 0 Prony’s algorithm [Prony, 1795] can reconstruct g ( y )

  20. 8 Chebyshev Bases (With A Known Sparsity t ) Chebyshev-3 and Chebyshev-4 Bases can be done in a similar way � y 2 + 1 � � � y + 1 1 y 2 = y 2 n + 1 + Chebyshev-3: V n y 2 n + 1 y 2 � y 2 + 1 � � � y − 1 1 y 2 = y 2 n + 1 − Chebyshev-4: W n y 2 n + 1 y 2

  21. 8 Chebyshev Bases (With A Known Sparsity t ) Chebyshev-3 and Chebyshev-4 Bases can be done in a similar way y n + 1 � y + 1 � y n y = Chebyshev-1: T n 2 2 � y + 1 � � � y − 1 1 y = y n + 1 − Chebyshev-2: U n y n + 1 2 y � y 2 + 1 � � � y + 1 1 y 2 = y 2 n + 1 + Chebyshev-3: V n y 2 n + 1 y 2 � y 2 + 1 � � � y − 1 1 y 2 = y 2 n + 1 − Chebyshev-4: W n y 2 n + 1 y 2

  22. 8 Chebyshev Bases (With A Known Sparsity t ) Chebyshev-3 and Chebyshev-4 Bases can be done in a similar way y n + 1 � y + 1 � y n y = Chebyshev-1: T n 2 2 � y + 1 � � � y − 1 1 y = y n + 1 − Chebyshev-2: U n y n + 1 2 y � y 2 + 1 � y + 1 � � � � y + 1 y 2 y = T 2 n + 1 Chebyshev-3: V n → Chebyshev-1 y 2 2 � y 2 + 1 � y + 1 � � y 2 y = U 2 n Chebyshev-4: W n → Chebyshev-2 2 2

  23. 9 Chebyshev Bases (With A Known Sparsity t ) t ∑ Chebyshev-1 Basis: Write f ( x ) as f ( x ) = c j T δ j ( x ) j = 1 Define � y + 1 � y + 1 t � � def y y ∑ g ( y ) = f = c j T δ j 2 2 j = 1 t � � � � c j y δ j + 1 y , 1 ∑ = ∈ K y δ j 2 y j = 1 � ω i + 1 � 1 � � ω i a i = g ( ω i ) = f = g = a − i for ω ∈ K ω i 2 Prony’s algorithm [Prony, 1795] can reconstruct g ( y ) [Arnold & Kaltofen, 2015] uses 2 t + 1 evaluations if δ 1 � = 0

  24. 10

  25. 11 Chebyshev Bases (With A Known Sparsity t ) [Arnold & Kaltofen, 2015] uses 2 t + 1 evaluations if δ 1 � = 0

  26. 11 Chebyshev Bases (With A Known Sparsity t ) [Arnold & Kaltofen, 2015] uses 2 t + 1 evaluations if δ 1 � = 0 Let ω ∈ K ω δ i 1 + ω δ i 2 + 1 1 � �� � 1 1 ω δ i 1 ω δ i 2 � � ω δ i 1 , ω δ i 2 , � = ω δ i 1 , ⇐ ⇒ � ≥ 3 � � ω δ i 2 2 2 �

  27. 11 Chebyshev Bases (With A Known Sparsity t ) [Arnold & Kaltofen, 2015] uses 2 t + 1 evaluations if δ 1 � = 0 Let ω ∈ K ω δ i 1 + ω δ i 2 + 1 1 � �� � 1 1 ω δ i 1 ω δ i 2 � � ω δ i 1 , ω δ i 2 , � = ω δ i 1 , ⇐ ⇒ � ≥ 3 � � ω δ i 2 2 2 � � 1 � �� ω δ t ,..., 1 � � ω δ 1 , ω δ 1 ,..., ω δ t � = 2 t or = 2 t − 1 with δ 1 = 0 Let � � �

Recommend


More recommend