some properties of hadamard matrices
play

Some Properties of Hadamard Matrices V. Kvaratskhelia, M. - PDF document

1 CERN Cognitive Festival in Georgia GTU, October 22 26, 2018 Some Properties of Hadamard Matrices V. Kvaratskhelia, M. Menteshashvili, G. Giorgobiani Hadamard matrix - = ( ) , = 1,2, , ; 1 < <


  1. 1 CERN Cognitive Festival in Georgia GTU, October 22 – 26, 2018 Some Properties of Hadamard Matrices V. Kvaratskhelia, M. Menteshashvili, G. Giorgobiani Hadamard matrix - 𝐼 = (β„Ž π‘—π‘˜ ) 𝑗, π‘˜ = 1,2, … , π‘œ; 1 < π‘œ < ∞ β„Ž π‘—π‘˜ = Β±1 βŒ©β„Ž 𝑗 βŠ₯ β„Ž 𝑙 βŒͺ = 0, 𝑗 β‰  𝑙 β„Ž 𝑗 ≑ (β„Ž 𝑗1 , β„Ž 𝑗2 , β‹― , β„Ž π‘—π‘œ ) ∈ ℝ π‘œ π“˜ 𝒐 - the class of all Hadamard matrices of order π‘œ = 4𝑙. Example: 8 Γ— 8 Hadamard matrix 𝟐 βˆ’πŸ 𝟐 𝟐 𝟐 𝟐 βˆ’πŸ 𝟐 𝟐 𝟐 𝟐 𝟐 βˆ’πŸ 𝟐 𝟐 βˆ’πŸ 𝟐 βˆ’πŸ βˆ’πŸ 𝟐 βˆ’πŸ 𝟐 βˆ’πŸ βˆ’πŸ 𝟐 βˆ’πŸ 𝟐 – 𝟐 𝟐 𝟐 – 𝟐 𝟐 𝟐 βˆ’πŸ 𝟐 𝟐 𝟐 𝟐 βˆ’πŸ 𝟐 𝟐 𝟐 𝟐 𝟐 βˆ’πŸ 𝟐 𝟐 βˆ’πŸ 𝟐 βˆ’πŸ βˆ’πŸ 𝟐 βˆ’πŸ 𝟐 βˆ’πŸ βˆ’πŸ 𝟐 βˆ’πŸ [ 𝟐] 𝟐 βˆ’πŸ 𝟐 𝟐 βˆ’πŸ

  2. 2 Practical use: β€’ Error-correcting codes - in early satellite transmissions. For example: 1971 – 72, Mariner 9’s mission to Mars , 54 billion bits of data had been transmitted; Flybys of the outer planets in the solar system. β€’ Modern CDMA cellphones - minimize interference with other transmissions to the base station. β€’ New applications are everywhere about us such as in: pattern recognition, neuroscience, optical communication and information hiding. β€’ Compressive Sensing (Signal Reconstruction) . D. J. Lum et al. Fast Hadamard transforms for compressive sensing. 2015 β€’ In Chemical Physics - Construction of the orthogonal set of molecular orbitals. K. Balasubramanian. Molecular orbitals and Hadamard matrices 1993.

  3. 3 In 2002 V. Kvaratskhelia (in β€œSome inequalities related to Hadamard matrices”. Functional Analysis and Its Applications ) considered the following characteristic: ℝ π‘œ 𝑗𝑑 π‘“π‘Ÿπ‘£π‘—π‘žπ‘žπ‘“π‘’ π‘₯π‘—π‘’β„Ž π‘š π‘ž βˆ’ π‘œπ‘π‘ π‘›, 1 ≀ π‘ž ≀ ∞ ‖𝑦‖ π‘ž = √|𝑦 1 | π‘ž + β‹― |𝑦 π‘œ | π‘ž π‘ž ‖𝑦‖ ∞ = 𝑛𝑏𝑦{|𝑦 1 |, … , |𝑦 π‘œ |} 𝑦 = (𝑦 1 , … , 𝑦 π‘œ ) ∈ ℝ π‘œ . πœ› π‘ž,𝐼 ≑ 𝑛𝑏𝑦{β€–β„Ž 1 β€– π‘ž , β€–β„Ž 1 + β„Ž 2 β€– π‘ž , β‹― , β€–β„Ž 1 + β„Ž 2 + β‹― + β„Ž π‘œ β€– π‘ž }, 𝜷 𝒒,π“˜ 𝒐 ≑ π’π’ƒπ’š π‘°βˆˆπ“˜ 𝒐 𝝕 𝒒,𝑰 ( 1 π‘ž + 1 ( 1 π‘ž + 1 2 ) ≀ 𝜷 𝒒,π“˜ 𝒐 ≀ π‘œ 1 2 ) , 1 ≀ π‘ž ≀ 2 , (1) √2 βˆ™ π‘œ 𝜷 𝒒,π“˜ 𝒐 = π‘œ , 2 ≀ π‘ž ≀ ∞ . (2) Naturally arises the question to estimate the minimum 𝝏 𝒒,π“˜ 𝒐 ≑ 𝒏𝒋𝒐 π‘°βˆˆπ“˜ 𝒐 𝝕 𝒒,𝑰 Submitted paper (2018): G. Giorgobiani, V. Kvaratskhelia. Maximum inequalities and their applications to Orthogonal and Hadamard matrices.

  4. 4 The following estimations are valid: a) when 1 ≀ p < ∞ (1 π‘ž +1 2) √ 7 ln π‘œ ; πœ• π‘ž,β„‹ π‘œ ≀ π‘œ b) when p = 2 πœ• 2,β„‹ π‘œ ≀ π‘œ; c) when π‘ž = ∞ , for some absolute constant 𝐿 πœ• ∞,β„‹ π‘œ ≀ 𝐿 βˆšπ‘œ . ( 1 π‘ž + 1 2 ) √ 7 ln π‘œ is asymptoticly Case πŸ‘ < 𝒒 < ∞ : the bound π‘œ smaller then π‘œ of (2) and this is achieved for extremely large π‘œ -s (𝑗𝑔 π‘ž = 25, π‘œ β‰₯ 33; 𝑗𝑔 π‘ž = 2.5, π‘œ > 2 Γ— 10 11 ) . Case 𝒒 = ∞ : 𝝏 ∞,π“˜ 𝒐 β‰ͺ 𝜷 ∞,π“˜ 𝒐 . Algorithms Sign-Algorithms – Spencer; Lovett & Meka: Partial Coloring Lemma (Herding algorithms of the Machin Learning) Permutation-Algorithm – S. Chobanyan.

  5. 5 Generalization. Complex Hadamard matrices β„Ž 11 β‹― β„Ž 1π‘œ 𝐼 = [ β‹― β‹― β‹― ] β„Ž π‘œ1 β‹― β„Ž π‘œπ‘œ β„Ž π‘—π‘˜ ∈ β„‚ |β„Ž π‘—π‘˜ | = 1 𝐼𝐼 βˆ— = π‘œπ½ 𝐼 βˆ— βˆ’ π‘‘π‘π‘œπ‘˜π‘£π‘•π‘π‘’π‘“ π‘’π‘ π‘π‘œπ‘‘π‘žπ‘π‘‘π‘“, 𝐽 βˆ’ π‘—π‘’π‘“π‘œπ‘’π‘—π‘’π‘§ They are Unitary matrices after rescaling. Example: rescaled Fourier Matrix , π‘œ β‰₯ 1 𝐼 = βˆšπ‘œ[𝐺 π‘œ ] 𝑙,π‘˜ π‘œ ] 𝑙,π‘˜ = 1 βˆšπ‘œ 𝑓 2πœŒπ’‹(π‘™βˆ’1)(π‘˜βˆ’1)/π‘œ , 𝑙, π‘˜ = 1, … , π‘œ, [𝐺

  6. 6 Unitary (complex) matrices are important in Particle Physics : β€’ CKM (Cabibbo-Kobayashi-Maskawa) matrix, appears in the coupling of quarks to 𝑋 Β± bosons; β€’ Reconstruction Problem of a unitary matrix see e.g . Auberson, G., Martin A., Mennessier G. β€œ On the reconstruction of a unitary matrix from its moduli ”. The CERN Theory Department:1990 - Report # CERN-TH-5809-90. Applications of Complex Hadamard matrices (in 90-ies) β€’ various branches of mathematics, β€’ quantum optics, β€’ high-energy physics , β€’ quantum teleportation . We plan to transfer our results for Real Hadamard matrices to the Complex case.

  7. 7 Thank you for your attention

Recommend


More recommend