hadamard type operators for real analytic functions of
play

Hadamard type operators for real analytic functions of several - PowerPoint PPT Presentation

Hadamard multipliers Multiplicative Fourier-Laplace transform Hadamard type operators for real analytic functions of several variables and moments of analytic functionals Pawe Doma nski (based on joint results with Michael Langenbruch


  1. Hadamard multipliers Multiplicative Fourier-Laplace transform Hadamard type operators for real analytic functions of several variables and moments of analytic functionals Paweł Doma´ nski (based on joint results with Michael Langenbruch – Oldenburg) A. Mickiewicz University, Pozna´ n, Poland amu.edu.pl/ ∼ domanski Pełczy´ nski Memorial Conference Be ¸dlewo, 13-19.07.2014

  2. Hadamard multipliers Multiplicative Fourier-Laplace transform 1. Dilation invariant operators

  3. Hadamard multipliers Multiplicative Fourier-Laplace transform 1. Dilation invariant operators translation invariant operators ↔ convolution oper. ↔ Fourier analysis

  4. Hadamard multipliers Multiplicative Fourier-Laplace transform 1. Dilation invariant operators translation invariant operators ↔ convolution oper. ↔ Fourier analysis Definition (dilation) a , x ∈ R d M a ( f )( x ) := f ( ax ) ax = ( a 1 x 1 , . . . , a d x d )

  5. Hadamard multipliers Multiplicative Fourier-Laplace transform 1. Dilation invariant operators translation invariant operators ↔ convolution oper. ↔ Fourier analysis Definition (dilation) a , x ∈ R d M a ( f )( x ) := f ( ax ) ax = ( a 1 x 1 , . . . , a d x d ) dilation invariant operators ↔ “multiplicative convolution”? ↔ ??

  6. Hadamard multipliers Multiplicative Fourier-Laplace transform 1. Dilation invariant operators translation invariant operators ↔ convolution oper. ↔ Fourier analysis Definition (dilation) a , x ∈ R d M a ( f )( x ) := f ( ax ) ax = ( a 1 x 1 , . . . , a d x d ) dilation invariant operators ↔ “multiplicative convolution”? ↔ ?? Difference translations: a group dilations: a semigroup

  7. Hadamard multipliers Multiplicative Fourier-Laplace transform 2. The class of real analytic functions

  8. Hadamard multipliers Multiplicative Fourier-Laplace transform 2. The class of real analytic functions Notation A ( R d ) — the class of real analytic functions

  9. Hadamard multipliers Multiplicative Fourier-Laplace transform 2. The class of real analytic functions Notation A ( R d ) — the class of real analytic functions Topology: nice, complete, nuclear, closed graph theorem, uniform boundedness principle

  10. Hadamard multipliers Multiplicative Fourier-Laplace transform 2. The class of real analytic functions Notation A ( R d ) — the class of real analytic functions Topology: nice, complete, nuclear, closed graph theorem, uniform boundedness principle but non-Banach, non-Fr´ echet...

  11. Hadamard multipliers Multiplicative Fourier-Laplace transform 2. The class of real analytic functions Notation A ( R d ) — the class of real analytic functions Topology: nice, complete, nuclear, closed graph theorem, uniform boundedness principle but non-Banach, non-Fr´ echet... Fact A linear operator on A ( R d ) is continuous iff it is sequentially continuous.

  12. Hadamard multipliers Multiplicative Fourier-Laplace transform 2. The class of real analytic functions Notation A ( R d ) — the class of real analytic functions Topology: nice, complete, nuclear, closed graph theorem, uniform boundedness principle but non-Banach, non-Fr´ echet... Fact A linear operator on A ( R d ) is continuous iff it is sequentially continuous. Definition f n → f in A ( R d ) iff ∃ U a complex neighbourhood of R d s.t. f n , f ∈ H ( U ) and f n → f in H ( U ) .

  13. Hadamard multipliers Multiplicative Fourier-Laplace transform 3. Hadamard multipliers

  14. Hadamard multipliers Multiplicative Fourier-Laplace transform 3. Hadamard multipliers Theorem Let L : A ( R d ) → A ( R d ) be a linear continuous map. TFAE

  15. Hadamard multipliers Multiplicative Fourier-Laplace transform 3. Hadamard multipliers Theorem Let L : A ( R d ) → A ( R d ) be a linear continuous map. TFAE ∀ a ∈ R d ; (a) LM a = M a L

  16. Hadamard multipliers Multiplicative Fourier-Laplace transform 3. Hadamard multipliers Theorem Let L : A ( R d ) → A ( R d ) be a linear continuous map. TFAE ∀ a ∈ R d ; (a) LM a = M a L M a ( f )( x ) = f ( ax )

  17. Hadamard multipliers Multiplicative Fourier-Laplace transform 3. Hadamard multipliers Theorem Let L : A ( R d ) → A ( R d ) be a linear continuous map. TFAE ∀ a ∈ R d ; (a) LM a = M a L M a ( f )( x ) = f ( ax ) Lx α = m α x α , (b) (monomials are eigenvectors) ∀ α ∈ N d

  18. Hadamard multipliers Multiplicative Fourier-Laplace transform 3. Hadamard multipliers Theorem Let L : A ( R d ) → A ( R d ) be a linear continuous map. TFAE ∀ a ∈ R d ; (a) LM a = M a L M a ( f )( x ) = f ( ax ) Lx α = m α x α , (b) (monomials are eigenvectors) ∀ α ∈ N d ( m α ) α ⊂ C — the multiplier sequence;

  19. Hadamard multipliers Multiplicative Fourier-Laplace transform 3. Hadamard multipliers Theorem Let L : A ( R d ) → A ( R d ) be a linear continuous map. TFAE ∀ a ∈ R d ; (a) LM a = M a L M a ( f )( x ) = f ( ax ) Lx α = m α x α , (b) (monomials are eigenvectors) ∀ α ∈ N d ( m α ) α ⊂ C — the multiplier sequence; (c) (multiplicative convolution) ′ T ∈ A ( R d ) ∃ ! L ( f )( x ) = � T , M x ( f ) �

  20. Hadamard multipliers Multiplicative Fourier-Laplace transform 3. Hadamard multipliers Theorem Let L : A ( R d ) → A ( R d ) be a linear continuous map. TFAE ∀ a ∈ R d ; (a) LM a = M a L M a ( f )( x ) = f ( ax ) Lx α = m α x α , (b) (monomials are eigenvectors) ∀ α ∈ N d ( m α ) α ⊂ C — the multiplier sequence; (c) (multiplicative convolution) ′ T ∈ A ( R d ) ∃ ! L ( f )( x ) = � T , M x ( f ) � = � T , f ( x · ) �

  21. Hadamard multipliers Multiplicative Fourier-Laplace transform 3. Hadamard multipliers Theorem Let L : A ( R d ) → A ( R d ) be a linear continuous map. TFAE ∀ a ∈ R d ; (a) LM a = M a L M a ( f )( x ) = f ( ax ) Lx α = m α x α , (b) (monomials are eigenvectors) ∀ α ∈ N d ( m α ) α ⊂ C — the multiplier sequence; (c) (multiplicative convolution) ′ T ∈ A ( R d ) ∃ ! L ( f )( x ) = � T , M x ( f ) � = � T , f ( x · ) � m α = � T , x α � — the moment sequence.

  22. Hadamard multipliers Multiplicative Fourier-Laplace transform 3. Hadamard multipliers Theorem Let L : A ( R d ) → A ( R d ) be a linear continuous map. TFAE ∀ a ∈ R d ; (a) LM a = M a L M a ( f )( x ) = f ( ax ) Lx α = m α x α , (b) (monomials are eigenvectors) ∀ α ∈ N d ( m α ) α ⊂ C — the multiplier sequence; (c) (multiplicative convolution) ′ T ∈ A ( R d ) ∃ ! L ( f )( x ) = � T , M x ( f ) � = � T , f ( x · ) � m α = � T , x α � — the moment sequence. Definition Operators as above are called (Hadamard) multipliers on A ( R d ) .

  23. Hadamard multipliers Multiplicative Fourier-Laplace transform 4. Examples

  24. Hadamard multipliers Multiplicative Fourier-Laplace transform 4. Examples Example (Euler partial differential operators)

  25. Hadamard multipliers Multiplicative Fourier-Laplace transform 4. Examples Example (Euler partial differential operators) z ∈ C d — a polynomial P ( z ) = � | α |≤ q a α z α ,

  26. Hadamard multipliers Multiplicative Fourier-Laplace transform 4. Examples Example (Euler partial differential operators) z ∈ C d — a polynomial θ j ( f ) = x j ∂ f P ( z ) = � | α |≤ q a α z α , ∂ x j

  27. Hadamard multipliers Multiplicative Fourier-Laplace transform 4. Examples Example (Euler partial differential operators) z ∈ C d — a polynomial θ j ( f ) = x j ∂ f P ( z ) = � | α |≤ q a α z α , ∂ x j | α |≤ q a α θ α P ( θ ) := �

  28. Hadamard multipliers Multiplicative Fourier-Laplace transform 4. Examples Example (Euler partial differential operators) z ∈ C d — a polynomial θ j ( f ) = x j ∂ f P ( z ) = � | α |≤ q a α z α , ∂ x j | α |≤ q a α θ α = � | α |≤ q a α θ α 1 1 . . . θ α d P ( θ ) := � — an Euler pdo d

  29. Hadamard multipliers Multiplicative Fourier-Laplace transform 4. Examples Example (Euler partial differential operators) z ∈ C d — a polynomial θ j ( f ) = x j ∂ f P ( z ) = � | α |≤ q a α z α , ∂ x j | α |≤ q a α θ α = � | α |≤ q a α θ α 1 1 . . . θ α d P ( θ ) := � — an Euler pdo d ( P ( α )) α ∈ N d — the multiplier sequence

  30. Hadamard multipliers Multiplicative Fourier-Laplace transform 4. Examples Example (Euler partial differential operators) z ∈ C d — a polynomial θ j ( f ) = x j ∂ f P ( z ) = � | α |≤ q a α z α , ∂ x j | α |≤ q a α θ α = � | α |≤ q a α θ α 1 1 . . . θ α d P ( θ ) := � — an Euler pdo d ( P ( α )) α ∈ N d — the multiplier sequence Problems

  31. Hadamard multipliers Multiplicative Fourier-Laplace transform 4. Examples Example (Euler partial differential operators) z ∈ C d — a polynomial θ j ( f ) = x j ∂ f P ( z ) = � | α |≤ q a α z α , ∂ x j | α |≤ q a α θ α = � | α |≤ q a α θ α 1 1 . . . θ α d P ( θ ) := � — an Euler pdo d ( P ( α )) α ∈ N d — the multiplier sequence Problems Describe multiplier sequences = moment sequences for analytic functionals.

Recommend


More recommend