some comments on denumerant of numerical 3 semigroups
play

Some comments on denumerant of numerical 3semigroups IMNS 2014 , - PowerPoint PPT Presentation

Introduction Distribution of 3factorizations S + and S sums Denumerants from S sums Some comments on denumerant of numerical 3semigroups IMNS 2014 , Cortona Francesc Aguil-Gost, Dept. MA-IV, Univ. Politcnica de Catalunya,


  1. Introduction Distribution of 3–factorizations S + and S − sums Denumerants from S ± sums Some comments on denumerant of numerical 3–semigroups IMNS 2014 , Cortona Francesc Aguiló-Gost, Dept. MA-IV, Univ. Politècnica de Catalunya, Barcelona Pedro A. García-Sánchez, Depto. de Álgebra, Univ. de Granada, Granada David Llena, Depto. de Matemáticas, Univ. de Almería, Almería Denumerant of numer. 3–semigroups IMNS–2014 Il Palazzone, Cortona

  2. Introduction Distribution of 3–factorizations Definitions and notation S + and S − sums Known results Denumerants from S ± sums Introduction Denumerant of numer. 3–semigroups IMNS–2014 Il Palazzone, Cortona

  3. Introduction Distribution of 3–factorizations Definitions and notation S + and S − sums Known results Denumerants from S ± sums Definitions and notation. Given a 1 , . . . , a n ∈ N , with 1 ≤ a 1 < a 2 < ... < a n and gcd( a 1 , ..., a n ) = 1 , the numerical n –semigrup S = � a 1 , . . . , a n � is defined by � a 1 , . . . , a n � = { x 1 a 1 + · · · + x n a n : ( x 1 , ..., x n ) ∈ N n } . Denumerant of numer. 3–semigroups IMNS–2014 Il Palazzone, Cortona

  4. Introduction Distribution of 3–factorizations Definitions and notation S + and S − sums Known results Denumerants from S ± sums Definitions and notation. Given a 1 , . . . , a n ∈ N , with 1 ≤ a 1 < a 2 < ... < a n and gcd( a 1 , ..., a n ) = 1 , the numerical n –semigrup S = � a 1 , . . . , a n � is defined by � a 1 , . . . , a n � = { x 1 a 1 + · · · + x n a n : ( x 1 , ..., x n ) ∈ N n } . Given m ∈ S , a vector ( x 1 , ..., x n ) ∈ N n is a factorization of m if x 1 a 1 + · · · + x n a n = m . Denumerant of numer. 3–semigroups IMNS–2014 Il Palazzone, Cortona

  5. Introduction Distribution of 3–factorizations Definitions and notation S + and S − sums Known results Denumerants from S ± sums Definitions and notation. Given a 1 , . . . , a n ∈ N , with 1 ≤ a 1 < a 2 < ... < a n and gcd( a 1 , ..., a n ) = 1 , the numerical n –semigrup S = � a 1 , . . . , a n � is defined by � a 1 , . . . , a n � = { x 1 a 1 + · · · + x n a n : ( x 1 , ..., x n ) ∈ N n } . Given m ∈ S , a vector ( x 1 , ..., x n ) ∈ N n is a factorization of m if x 1 a 1 + · · · + x n a n = m . { ( x 1 , ..., x n ) ∈ N n : x 1 a 1 + · · · + x n a n = m } , F ( m, � a 1 , ..., a n � ) = Denumerant of numer. 3–semigroups IMNS–2014 Il Palazzone, Cortona

  6. Introduction Distribution of 3–factorizations Definitions and notation S + and S − sums Known results Denumerants from S ± sums Definitions and notation. Given a 1 , . . . , a n ∈ N , with 1 ≤ a 1 < a 2 < ... < a n and gcd( a 1 , ..., a n ) = 1 , the numerical n –semigrup S = � a 1 , . . . , a n � is defined by � a 1 , . . . , a n � = { x 1 a 1 + · · · + x n a n : ( x 1 , ..., x n ) ∈ N n } . Given m ∈ S , a vector ( x 1 , ..., x n ) ∈ N n is a factorization of m if x 1 a 1 + · · · + x n a n = m . { ( x 1 , ..., x n ) ∈ N n : x 1 a 1 + · · · + x n a n = m } , F ( m, � a 1 , ..., a n � ) = d( m, � a 1 , ..., a n � ) = |F ( m, � a 1 , ..., a n � ) | . Denumerant of numer. 3–semigroups IMNS–2014 Il Palazzone, Cortona

  7. Introduction Distribution of 3–factorizations Definitions and notation S + and S − sums Known results Denumerants from S ± sums Definitions and notation Given N ∈ S = � a 1 , ..., a n � , the Apéry set Ap( S, N ) is Ap( S, N ) = { s ∈ S : s − N �∈ S } . Denumerant of numer. 3–semigroups IMNS–2014 Il Palazzone, Cortona

  8. Introduction Distribution of 3–factorizations Definitions and notation S + and S − sums Known results Denumerants from S ± sums Know results Generating function of d( m, � a 1 , ..., a n � ) (Sylvester, 1882): 1 φ ( z ) = (1 − z a 1 )(1 − z a 2 ) · · · (1 − z a n ) . Denumerant of numer. 3–semigroups IMNS–2014 Il Palazzone, Cortona

  9. Introduction Distribution of 3–factorizations Definitions and notation S + and S − sums Known results Denumerants from S ± sums Know results Generating function of d( m, � a 1 , ..., a n � ) (Sylvester, 1882): 1 φ ( z ) = (1 − z a 1 )(1 − z a 2 ) · · · (1 − z a n ) . Assymptotic behaviour (Schur, 1926): d( m, � a 1 , ..., a n � ) lim sup = 1 . m n − 1 m →∞ a 1 a 2 ··· a n ( n − 1)! Denumerant of numer. 3–semigroups IMNS–2014 Il Palazzone, Cortona

  10. Introduction Distribution of 3–factorizations Definitions and notation S + and S − sums Known results Denumerants from S ± sums Know results Denumerant formula for n = 2 (Popoviciu, 1953) d( m, � p, q � ) = m + pf ( m ) + qg ( m ) − 1 lcm( p, q ) where f ( m ) ≡ − mp − 1 (mod q ) and g ( m ) ≡ − mq − 1 (mod p ) . Denumerant of numer. 3–semigroups IMNS–2014 Il Palazzone, Cortona

  11. Introduction Distribution of 3–factorizations Definitions and notation S + and S − sums Known results Denumerants from S ± sums Know results Denumerant formula for n = 2 (Popoviciu, 1953) d( m, � p, q � ) = m + pf ( m ) + qg ( m ) − 1 lcm( p, q ) where f ( m ) ≡ − mp − 1 (mod q ) and g ( m ) ≡ − mq − 1 (mod p ) . Recursive denumerant formulae for n = 3 , 4 (Ehrhart, 1967). Denumerant of numer. 3–semigroups IMNS–2014 Il Palazzone, Cortona

  12. Introduction Distribution of 3–factorizations Definitions and notation S + and S − sums Known results Denumerants from S ± sums Know results Denumerant formula for n = 2 (Popoviciu, 1953) d( m, � p, q � ) = m + pf ( m ) + qg ( m ) − 1 lcm( p, q ) where f ( m ) ≡ − mp − 1 (mod q ) and g ( m ) ≡ − mq − 1 (mod p ) . Recursive denumerant formulae for n = 3 , 4 (Ehrhart, 1967). For n = 3 , an O ( ab ) algorithm for computing d( m, � a, b, c � ) was given by Lisoněk 1995. Denumerant of numer. 3–semigroups IMNS–2014 Il Palazzone, Cortona

  13. Introduction Distribution of 3–factorizations Plane distribution S + and S − sums Denumerant sums Denumerants from S ± sums Distribution of 3–factorizations Denumerant of numer. 3–semigroups IMNS–2014 Il Palazzone, Cortona

  14. 35 40 45 50 55 60 65 70 75 80 28 33 38 43 48 53 58 63 68 73 21 26 31 36 41 46 51 56 61 66 14 19 24 29 34 39 44 49 54 59 7 12 17 22 27 32 37 42 47 52 0 5 10 15 20 25 30 35 40 45 Introduction Distribution of 3–factorizations Plane distribution S + and S − sums Denumerant sums Denumerants from S ± sums Plane distribution Every numerical 3–semigroup S = � a, b, c � has related a plane L-shape H that encodes the set Ap( S, c ) . Denumerant of numer. 3–semigroups IMNS–2014 Il Palazzone, Cortona

  15. 35 40 45 50 55 60 65 70 75 80 28 33 38 43 48 53 58 63 68 73 21 26 31 36 41 46 51 56 61 66 14 19 24 29 34 39 44 49 54 59 7 12 17 22 27 32 37 42 47 52 0 5 10 15 20 25 30 35 40 45 Introduction Distribution of 3–factorizations Plane distribution S + and S − sums Denumerant sums Denumerants from S ± sums Plane distribution Every numerical 3–semigroup S = � a, b, c � has related a plane L-shape H that encodes the set Ap( S, c ) . An L-shape is denoted by the lengths of her sides H = L( l, h, w, y ) . Denumerant of numer. 3–semigroups IMNS–2014 Il Palazzone, Cortona

  16. 35 40 45 50 55 60 65 70 75 80 28 33 38 43 48 53 58 63 68 73 21 26 31 36 41 46 51 56 61 66 14 19 24 29 34 39 44 49 54 59 7 12 17 22 27 32 37 42 47 52 0 5 10 15 20 25 30 35 40 45 Introduction Distribution of 3–factorizations Plane distribution S + and S − sums Denumerant sums Denumerants from S ± sums Plane distribution Every numerical 3–semigroup S = � a, b, c � has related a plane L-shape H that encodes the set Ap( S, c ) . An L-shape is denoted by the lengths of her sides H = L( l, h, w, y ) . Example: Ap( � 5 , 7 , 11 � , 11) = { 0 , 5 , 7 , 10 , 12 , 14 , 15 , 17 , 19 , 20 , 24 } Denumerant of numer. 3–semigroups IMNS–2014 Il Palazzone, Cortona

  17. Introduction Distribution of 3–factorizations Plane distribution S + and S − sums Denumerant sums Denumerants from S ± sums Plane distribution Every numerical 3–semigroup S = � a, b, c � has related a plane L-shape H that encodes the set Ap( S, c ) . An L-shape is denoted by the lengths of her sides H = L( l, h, w, y ) . Example: Ap( � 5 , 7 , 11 � , 11) = { 0 , 5 , 7 , 10 , 12 , 14 , 15 , 17 , 19 , 20 , 24 } 35 40 45 50 55 60 65 70 75 80 28 33 38 43 48 53 58 63 68 73 21 26 31 36 41 46 51 56 61 66 14 19 24 29 34 39 44 49 54 59 7 12 17 22 27 32 37 42 47 52 0 5 10 15 20 25 30 35 40 45 H = L(5 , 3 , 2 , 2) Denumerant of numer. 3–semigroups IMNS–2014 Il Palazzone, Cortona

  18. Introduction Distribution of 3–factorizations Plane distribution S + and S − sums Denumerant sums Denumerants from S ± sums Plane distribution Every numerical 3–semigroup S = � a, b, c � has related a plane L-shape H that encodes the set Ap( S, c ) . An L-shape is denoted by the lengths of her sides H = L( l, h, w, y ) . Example: Ap( � 5 , 7 , 11 � , 11) = { 0 , 5 , 7 , 10 , 12 , 14 , 15 , 17 , 19 , 20 , 24 } 2 7 1 6 0 5 10 4 9 3 6 0 5 10 4 9 3 8 2 7 10 4 9 3 8 2 7 1 6 0 3 8 2 7 1 6 0 5 10 4 7 1 6 0 5 10 4 9 3 8 0 5 10 4 9 3 8 2 7 1 H = L(5 , 3 , 2 , 2) Denumerant of numer. 3–semigroups IMNS–2014 Il Palazzone, Cortona

Recommend


More recommend