on numerical semigroups closed with respect to the action
play

On numerical semigroups closed with respect to the action of affine - PowerPoint PPT Presentation

Summary Thabit and Mersenne numerical semigroups On affine maps and numerical semigroups On numerical semigroups closed with respect to the action of affine maps Simone Ugolini University of Trento International meeting on numerical


  1. Summary Thabit and Mersenne numerical semigroups On affine maps and numerical semigroups On numerical semigroups closed with respect to the action of affine maps Simone Ugolini University of Trento International meeting on numerical semigroups with applications Levico Terme July 7, 2016 Simone Ugolini On numerical semigroups and affine maps

  2. Summary Thabit and Mersenne numerical semigroups On affine maps and numerical semigroups Thabit and Mersenne numerical semigroups 1 On affine maps and numerical semigroups 2 Submonoids of ( N , +) closed w.r.t. affine maps The smallest ϑ a , b -semigroup containing a positive integer Simone Ugolini On numerical semigroups and affine maps

  3. Summary Thabit and Mersenne numerical semigroups On affine maps and numerical semigroups Thabit and Mersenne numerical semigroups 1 On affine maps and numerical semigroups 2 Submonoids of ( N , +) closed w.r.t. affine maps The smallest ϑ a , b -semigroup containing a positive integer Simone Ugolini On numerical semigroups and affine maps

  4. Summary Thabit and Mersenne numerical semigroups On affine maps and numerical semigroups Thabit numerical semigroups Definition [Rosales, Branco and Torr˜ ao, 2015] A numerical semigroup S is a Thabit numerical semigroup if there exists n ∈ N such that S = �{ 3 · 2 n + i − 1 : i ∈ N }� . Remark S is a numerical semigroup since its generators are coprime. Simone Ugolini On numerical semigroups and affine maps

  5. Summary Thabit and Mersenne numerical semigroups On affine maps and numerical semigroups Thabit numerical semigroups Definition [Rosales, Branco and Torr˜ ao, 2015] A numerical semigroup S is a Thabit numerical semigroup if there exists n ∈ N such that S = �{ 3 · 2 n + i − 1 : i ∈ N }� . Remark S is a numerical semigroup since its generators are coprime. Simone Ugolini On numerical semigroups and affine maps

  6. Summary Thabit and Mersenne numerical semigroups On affine maps and numerical semigroups Thabit numerical semigroups Definition [Rosales, Branco and Torr˜ ao, 2015] A numerical semigroup S is a Thabit numerical semigroup if there exists n ∈ N such that S = �{ 3 · 2 n + i − 1 : i ∈ N }� . Remark S is a numerical semigroup since its generators are coprime. Simone Ugolini On numerical semigroups and affine maps

  7. Summary Thabit and Mersenne numerical semigroups On affine maps and numerical semigroups Thabit numerical semigroups Example Let n = 2. Then S is generated by 3 · 4 − 1 = 11 3 · 8 − 1 = 23 3 · 16 − 1 = 47 . . . Notice that 23 = 2 · 11 + 1 47 = 2 · 23 + 1 Simone Ugolini On numerical semigroups and affine maps

  8. Summary Thabit and Mersenne numerical semigroups On affine maps and numerical semigroups Thabit numerical semigroups Example Let n = 2. Then S is generated by 3 · 4 − 1 = 11 3 · 8 − 1 = 23 3 · 16 − 1 = 47 . . . Notice that 23 = 2 · 11 + 1 47 = 2 · 23 + 1 Simone Ugolini On numerical semigroups and affine maps

  9. Summary Thabit and Mersenne numerical semigroups On affine maps and numerical semigroups Thabit numerical semigroups Example Let n = 2. Then S is generated by 3 · 4 − 1 = 11 3 · 8 − 1 = 23 3 · 16 − 1 = 47 . . . Notice that 23 = 2 · 11 + 1 47 = 2 · 23 + 1 Simone Ugolini On numerical semigroups and affine maps

  10. Summary Thabit and Mersenne numerical semigroups On affine maps and numerical semigroups Thabit numerical semigroups Example Let n = 2. Then S is generated by 3 · 4 − 1 = 11 3 · 8 − 1 = 23 3 · 16 − 1 = 47 . . . Notice that 23 = 2 · 11 + 1 47 = 2 · 23 + 1 Simone Ugolini On numerical semigroups and affine maps

  11. Summary Thabit and Mersenne numerical semigroups On affine maps and numerical semigroups Thabit numerical semigroups Proposition [RBT] Let n be a non-negative integer and T ( n ) = �{ 3 · 2 n + i − 1 : i ∈ N }� . Then 2 t + 1 for all t ∈ T ( n ) \{ 0 } . Simone Ugolini On numerical semigroups and affine maps

  12. Summary Thabit and Mersenne numerical semigroups On affine maps and numerical semigroups Thabit numerical semigroups Proposition [RBT] Let n be a non-negative integer and T ( n ) = �{ 3 · 2 n + i − 1 : i ∈ N }� . Then 2 t + 1 for all t ∈ T ( n ) \{ 0 } . Simone Ugolini On numerical semigroups and affine maps

  13. Summary Thabit and Mersenne numerical semigroups On affine maps and numerical semigroups Mersenne numerical semigroups Definition [RBT] A numerical semigroup S is a Mersenne numerical semigroup if there exists a positive integer n such that S = �{ 2 n + i − 1 : i ∈ N }� . Proposition [RBT] Let n be a positive integer and M ( n ) = �{ 2 n + i − 1 : i ∈ N }� . Then 2 s + 1 for all s ∈ M ( n ) \{ 0 } . Simone Ugolini On numerical semigroups and affine maps

  14. Summary Thabit and Mersenne numerical semigroups On affine maps and numerical semigroups Mersenne numerical semigroups Definition [RBT] A numerical semigroup S is a Mersenne numerical semigroup if there exists a positive integer n such that S = �{ 2 n + i − 1 : i ∈ N }� . Proposition [RBT] Let n be a positive integer and M ( n ) = �{ 2 n + i − 1 : i ∈ N }� . Then 2 s + 1 for all s ∈ M ( n ) \{ 0 } . Simone Ugolini On numerical semigroups and affine maps

  15. Summary Thabit and Mersenne numerical semigroups On affine maps and numerical semigroups Mersenne numerical semigroups Definition [RBT] A numerical semigroup S is a Mersenne numerical semigroup if there exists a positive integer n such that S = �{ 2 n + i − 1 : i ∈ N }� . Proposition [RBT] Let n be a positive integer and M ( n ) = �{ 2 n + i − 1 : i ∈ N }� . Then 2 s + 1 for all s ∈ M ( n ) \{ 0 } . Simone Ugolini On numerical semigroups and affine maps

  16. Summary Submonoids of ( N , +) closed w.r.t. affine maps Thabit and Mersenne numerical semigroups The smallest ϑ a , b -semigroup containing a positive integer On affine maps and numerical semigroups Thabit and Mersenne numerical semigroups 1 On affine maps and numerical semigroups 2 Submonoids of ( N , +) closed w.r.t. affine maps The smallest ϑ a , b -semigroup containing a positive integer Simone Ugolini On numerical semigroups and affine maps

  17. Summary Submonoids of ( N , +) closed w.r.t. affine maps Thabit and Mersenne numerical semigroups The smallest ϑ a , b -semigroup containing a positive integer On affine maps and numerical semigroups Thabit and Mersenne numerical semigroups 1 On affine maps and numerical semigroups 2 Submonoids of ( N , +) closed w.r.t. affine maps The smallest ϑ a , b -semigroup containing a positive integer Simone Ugolini On numerical semigroups and affine maps

  18. Summary Submonoids of ( N , +) closed w.r.t. affine maps Thabit and Mersenne numerical semigroups The smallest ϑ a , b -semigroup containing a positive integer On affine maps and numerical semigroups Submonoids of ( N , +) closed w.r.t. affine maps Definition For a ∈ N ∗ := N \{ 0 } and b ∈ N we define the map ϑ a , b : → N N x �→ ax + b Definition A subsemigroup G of ( N , +) containing 0 is a ϑ a , b -semigroup if ϑ a , b ( y ) ∈ G for any y ∈ G \{ 0 } . Examples Thabit numerical semigroups are ϑ 2 , 1 -semigroups. Mersenne numerical semigroups are ϑ 2 , 1 -semigroups. Simone Ugolini On numerical semigroups and affine maps

  19. Summary Submonoids of ( N , +) closed w.r.t. affine maps Thabit and Mersenne numerical semigroups The smallest ϑ a , b -semigroup containing a positive integer On affine maps and numerical semigroups Submonoids of ( N , +) closed w.r.t. affine maps Definition For a ∈ N ∗ := N \{ 0 } and b ∈ N we define the map ϑ a , b : → N N x �→ ax + b Definition A subsemigroup G of ( N , +) containing 0 is a ϑ a , b -semigroup if ϑ a , b ( y ) ∈ G for any y ∈ G \{ 0 } . Examples Thabit numerical semigroups are ϑ 2 , 1 -semigroups. Mersenne numerical semigroups are ϑ 2 , 1 -semigroups. Simone Ugolini On numerical semigroups and affine maps

  20. Summary Submonoids of ( N , +) closed w.r.t. affine maps Thabit and Mersenne numerical semigroups The smallest ϑ a , b -semigroup containing a positive integer On affine maps and numerical semigroups Submonoids of ( N , +) closed w.r.t. affine maps Definition For a ∈ N ∗ := N \{ 0 } and b ∈ N we define the map ϑ a , b : → N N x �→ ax + b Definition A subsemigroup G of ( N , +) containing 0 is a ϑ a , b -semigroup if ϑ a , b ( y ) ∈ G for any y ∈ G \{ 0 } . Examples Thabit numerical semigroups are ϑ 2 , 1 -semigroups. Mersenne numerical semigroups are ϑ 2 , 1 -semigroups. Simone Ugolini On numerical semigroups and affine maps

  21. Summary Submonoids of ( N , +) closed w.r.t. affine maps Thabit and Mersenne numerical semigroups The smallest ϑ a , b -semigroup containing a positive integer On affine maps and numerical semigroups Submonoids of ( N , +) closed w.r.t. affine maps Definition For a ∈ N ∗ := N \{ 0 } and b ∈ N we define the map ϑ a , b : → N N x �→ ax + b Definition A subsemigroup G of ( N , +) containing 0 is a ϑ a , b -semigroup if ϑ a , b ( y ) ∈ G for any y ∈ G \{ 0 } . Examples Thabit numerical semigroups are ϑ 2 , 1 -semigroups. Mersenne numerical semigroups are ϑ 2 , 1 -semigroups. Simone Ugolini On numerical semigroups and affine maps

Recommend


More recommend