solid state
play

solid-state metal anodes (day 1) Ma Mauro Pasta Faraday - PowerPoint PPT Presentation

Proprietary and Confidential SOLBAT: solid-state metal anodes (day 1) Ma Mauro Pasta Faraday Institution 8-monthly meeting 1 WHY SOLID STATE? ENERGY POWER SAFETY 2 HOW SOLID STATE? ENERGY + = + ~1 POWER


  1. Proprietary and Confidential SOLBAT: solid-state metal anodes (day 1) Ma Mauro Pasta Faraday Institution 8-monthly meeting 1

  2. WHY SOLID STATE? ENERGY POWER SAFETY 2

  3. HOW SOLID STATE? ENERGY 𝑒 𝑀𝑗 + = 𝐽 𝑀𝑗 + ~1 POWER 𝐽 π‘’π‘π‘’π‘π‘š SAFETY 3

  4. ACADEMIA 800 1976-2018 United States 1017 Scopus keywords: solid state electrolyte battery China 1007 Japan 819 India 314 600 Germany 302 South Korea 290 𝑀𝑗 10 𝐻𝑓𝑄 2 𝑇 12 France 202 Canada 137 𝑀𝑗 9.54 𝑇 1.74 𝑄 21.44 𝑇 11.7 π·π‘š 0.3 United Kingdom 128 400 Italy 125 2015-2018 China 688 United States 525 Japan 294 200 Germany 210 South Korea 168 India 113 Canada 74 France 58 0 Spain 57 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 4 Proprietary and Confidential United Kingdom 57

  5. IN INDUSTRY + + 100M$ + + + β€˜04 β€˜07 β€˜12 β€˜15 β€˜17 β€˜18 + stops manufacturing efforts abandons SAKTI3 patents 5 Proprietary and Confidential

  6. SOLBAT

  7. THE TEAM 7

  8. IN INORGANIC CERAMICS Anti-perovskite Perovskite (LLTO) LiSICON Garnet (LLZO) 𝑀𝑗 3𝑦 𝑀𝑏 2/3βˆ’π‘¦ 1/3βˆ’2𝑦 π‘ˆπ‘—π‘ƒ 3 (𝑀𝑗 3 π‘ƒπ·π‘š) 𝑀𝑗 14 π‘Žπ‘œπ»π‘“ 4 𝑃 16 𝑀𝑗 7 𝑀𝑏 3 π‘Žπ‘  2 𝑃 12 LGPS Argyrodite NaSICON 𝑀𝐡𝐻𝑄 Thio-LiSICON 𝑀𝑗 10 𝐻𝑓𝑄 2 𝑇 12 Li 6 PS 5 Cl 𝑀𝑗 1.3 π΅π‘š 0.3 𝐻𝑓 1.7 (𝑄𝑃 4 ) 3 𝑀𝑗 4βˆ’π‘¦ π‘Žπ‘œπ»π‘“ 1βˆ’π‘¦ 𝑄𝑇 4 8

  9. Garnet, Li Li 7 La La 3 Zr Zr 2 O 12 Argyrodite, , Li Li 6 PS PS 5 Cl Cl 12 TWO MODEL SYSTEMS 𝜏 𝑀𝑗 + / S cm -1 1Β·10 -3 (Ta doped) 3Β·10 -3 Stability vs. Li metal stable ? Electrochemical window wide ? 𝐹/GPa 175.1 22.1 𝐻/GPa 68.9 8.1 𝜍 /g 𝑑𝑛 βˆ’3 4.89 1.89 Janek, Nazar, Nan, Maier, Armand, Chen et.al., New horizons for inorganic solid state ion conductors , EES (2018) 9

  10. TECHNOECONOMICS Conventional l Li-ion Argyrodite, Li 6 PS PS 5 Cl Cl + 74% vol. 770 Whl -1 1339 Whl -1 300 Whkg -1 434 Whkg -1 + 45% grav. 10

  11. TECHNOECONOMICS Conventional l Li-ion LLZO, Li 7 La La 3 Zr Zr 2 O 12 12 + 74% vol. 770 Whl -1 1339 Whl -1 300 Whkg -1 315 Whkg -1 + 5% grav. 11

  12. ARGYRODITE: HIS ISTORY Deiseroth et.al. Angew. Chem. Int. Ed. (2008) 12

  13. SYNTHESIS Li Li 2 S P 2 S 5 LiC iCl 5 1 2 Li 6 PS 5 Cl Boulineau et.al. Solid State Ionics (2012) 13

  14. CHARACTERIZATION MICROSCOPY ELECTROCHEMICAL STRUCTURAL Οƒ Li+ : ~3 mS/cm @ RT 20 ΞΌ m MECHANICAL 5 mm 2 ΞΌ m E = 15 Β±3 GPa 14

  15. HIG IGH-RESOLUTION PHASE CONSTRAST 10 100 0 nm nm 15

  16. SURFACE ANALYSIS XPS Li metal Li Li Li Li 6 PS PS 5 Cl Cl Li Li 6 PS PS 5 Cl Cl 5200 2400 1 ΞΌ m P 2p P 2p 4700 2200 4200 2000 Li 6 PS 5 Cl Li 6 PS 5 Cl Intensity (a.u.) 3700 1800 3200 1600 Li 6 PS 5 Cl + Li metal 2700 1400 reduced P 2200 1200 1E+3 Li 3 P 1700 1000 1200 800 R electrolyte Resistance / Ξ©βˆ™ cm 2 or Ξ©βˆ™ cm 140 138 136 134 132 130 128 126 124 140 138 136 134 132 130 128 126 124 Binding Energy (eV) Binding Energy (eV) 21800 S 2p S 2p 1E+2 Li 6 PS 5 Cl 16800 Li 6 PS 5 Cl Intensity (a.u.) R SEI Li 2 S 6000 + Li metal 1E+1 11800 6800 Li 2 S PS PS 1E+0 0 50 100 150 200 250 300 1800 1000 Time / h 168 166 164 162 160 158 156 168 166 164 162 160 158 156 16 Binding Energy (eV) Binding Energy (eV)

  17. IN IN-OPERANDO RAMAN Laser Raman spectra of bare Li 6 PS 5 Cl O-ring 3βˆ’ 𝑄𝑇 4 Optical Window 50 nm Au/Cu SE Cell body Li Contact pin SS-Back Contact WE CE/RE Journal of Power Sources 293 (2015) 941-945 17

  18. IN-OPERANDO RAMAN IN Potentiostatic: 15 minutes hold 18

  19. a) Pristine Li metal EFFECT OF PRESSURE .0 mA/cm 2 1.0 .0 mAh/cm 2 3 1.0 3 MPa 10 ΞΌ m Li 6 PS 5 Cl c) 1st Stripping Li RE b) 1st Plating SEM Li metal Li metal Solid electrolyte Li 0.16 1.0 mAβˆ™cm -2 10 ΞΌ m 10 ΞΌ m Li 6 PS 5 Cl Li 6 PS 5 Cl 3 MPa 0.12 e) 3rd Stripping d) 3rd Plating Li metal Li metal 0.08 0.04 Voltage / V 0.00 10 ΞΌ m 10 ΞΌ m Li 6 PS 5 Cl Li 6 PS 5 Cl -0.04 g) 7th Stripping f) 7th Plating 1 st cycle -0.08 Li metal 6 th cycle Li metal 7 th cycle -0.12 8 th cycle -0.16 0.0 0.2 0.4 0.6 0.8 1.0 Areal Capacity / mAhβˆ™cm -2 10 ΞΌ m 10 ΞΌ m 19 Li 6 PS 5 Cl Li 6 PS 5 Cl

  20. EFFECT OF PRESSURE .0 mA/cm 2 1.0 .0 mAh/cm 2 7 1.0 7 MPa 20

  21. X-RAY TOMOGRAPHY Effect of Current Density on Fail ilure Effect of Applie ied Pressure on Fail ilure 1mA/cm 2 7MPa 3MPa 1mA/cm 2 , 2mA/cm 2 3mA/cm 2 7MP 7MPa 8 cycles, shorted 50 cycles 50 cycles failed in 3 cycles failed within 1 cycle Top Bottom 21

  22. VOID EVOLUTION rd strip st stri pri ristin ine 3 rd 1 st ip rip 100 100 ΞΌ m 30 ΞΌ m 30 38 ΞΌ m 38 47 47 ΞΌ m 18 ΞΌ m 18 Li i meta etal Li i meta etal Li i meta etal th strip th stri 7 th 5 th trip rip 75 75 ΞΌ m 145 ΞΌ m 145 30 ΞΌ m 30 60 60 ΞΌ m 105 105 ΞΌ m 65 65 ΞΌ m Li i meta etal Li i meta etal 22

  23. ELECTRO-CHEMO-MECHANICS 50 lambda Guanchen Li – – + + – – + + electrode electrolyte electrode – – + + β€˜Critical current’ or β€˜critical . – – + + Ideal blocking (i=0) stress’? 0 pressure p – p ref (MPa) 0.08 V 10 8 303 K 343 K 373 K 403 K 433 K -100 Tran ansport model l out utput Pressure p-p (MPa) 10 6 stress (Pa) 0.16 V -200 p (Pa) Ideal blocking (i=0) -300 10 4 c = 3 kPa 1 Lithium-site occupancy x 0.32 V 0.24 V β€˜jamming’ 0.24 V -400 0.16 V 10 2 (signature of 0.8 0.08 V data = β€’ from 0.32 V tens ensio ion O O (0. (0.1 GP GPa) Occupation probability Fermi statistics) Sharifi et al. , J. Power Sources 302 302 (2016) 135 -500 0 0.32 V 0.6 10 -2 10 0 10 2 10 4 -600 Current density i (A/m 2 ) 0.08 V current density i (A/m 2 ) 0 0.5 1 1.5 2 Position (nm) position (nm) 0.4 uniform conc. in the bulk Space charging (screening) in A simple predictor: 0.2 double layers produces large Li + depletion forces at the interface 0 0 0.5 1 1.5 2 Position (nm) position (nm) 23

  24. ALL-SOLID-STATE: LTO| Li Li 6 PS PS 5 Cl|LTO 0.4 Li 4+x Ti 5 O 12 /Li Li 6 PS PS 5 Cl Cl/Super P 0.2 (3:6:1, mass) Voltage (V) 50 mV 0.0 Stack pressure: 2.5 MPa -0.2 1 st discharge Current density: 0.1 mAβˆ™cm -2 (0.1 mA g -1 ) -0.4 0.00 0.04 0.08 0.12 0.16 0.20 PreLTO : LiPSC : C (3: 6: 1 by mass ) Areal capacity (mAh cm -2 ) 100 um 2000 7 th 1600 1200 - Z " ( W ) Li 6 PS 5 Cl 588 um 800 100 um 400 PreLTO : LiPSC : C (3: 6 : 1 by mass ) 1 st 100 um 0 0 400 800 1200 1600 2000 24 Z ' ( W )

  25. ALL-SOLID-STATE: LTO| Li Li 6 PS PS 5 Cl|Li Li 4+x Ti 5 O 12 /Li Li 6 PS PS 5 Cl Cl/Super P (Cathode =3:6:1, mass) 160 -1 ) 150 Discharge Capacity (mAh g Li metal 2.0 140 17.5mA g -1 (0.1 C) 130 1.8 Active material Voltage (V) 120 1.6 110 1.4 1 st 100 5 th , 10 th , 15 th 1.2 90 0 20 40 60 80 100 120 140 160 Ying Zhao 80 -1 ) Specific Capacity (mAh g 0 5 10 15 20 Cycle number Solid electrolyte 25

  26. PROBE-STRUCTURE BASED DIS ISCOVERY Paul Sharp Li-Mg Li Mg-P-S-Cl Cl Li 2 MgCl 4 Li 7 Mg 5 Cl 15 S Li 15 Mg 9 Cl 31 S Li 13 Mg 10 Cl 31 S Li 6 Mg 5.5 Cl 15 S Li 11 Mg 11 Cl 31 S Li 13 Mg 11 Cl 29 S 3 Li 3 Mg 3 Cl 7 S 10 20 30 40 Mo_2  ( ο‚° ) 26

  27. OXIDES: LLZO 0.05 Al 0.1 Al 0.015 Al Al-doped LLZTO Al 0.0 Al O Zr Al Al Al Ti Ti and Zr Zr-doped LLTO 0.5 mo mol per er f.u. . Ti Ti- 0.5 mo mol per er f.u. . Zr Zr- dop oped LLTO dop oped LLTO 27

  28. DEVICE FABRICATION Mihkel Vestli 28

  29. IN INDUSTRIAL IN INTERACTION 29

  30. PDRA PRESENTATIONS Dr. Guanchen Li Dr. Ying Zhao Prof. Monroe’s group Prof. Fleck’s group University of Oxford University of Cambridge Den endrite nuc nucle leatio ion in n polycrysta tall llin ine lith thiu ium- Towards an an Opti timiz ized Composite e Cat athode conductive ceramic ics Str tructure Dr. Mihkel Vestli Dr. Paul Sharp Prof. Irvine’s group Prof. Rosseinsky’s group University of St. Andrews University of Liverpool Using ng Probe Structures to to Explo lore the e Li-Mg Mg-P-S-Cl l Tap ape-casti ting of f NASICON-based solid id state ba batt ttery Phase Field ld with th ChemDASH 30

  31. SOLBAT: solid-state metal anodes (day 1) Mauro Pasta Faraday Institution 8-monthly meeting 31

Recommend


More recommend