solid state lithium batteries using glass electrolytes
play

Solid-State Lithium Batteries Using Glass Electrolytes Masahiro - PowerPoint PPT Presentation

International Workshop on Scientific Challenges on New Functionalities in Glass April 15-17, 2007 Solid-State Lithium Batteries Using Glass Electrolytes Masahiro TATSUMISAGO Department of Applied Chemistry Graduate School of Engineering Osaka


  1. International Workshop on Scientific Challenges on New Functionalities in Glass April 15-17, 2007 Solid-State Lithium Batteries Using Glass Electrolytes Masahiro TATSUMISAGO Department of Applied Chemistry Graduate School of Engineering Osaka Prefecture University Japan

  2. AGENDA • Introduction – Why all-solid-state battery? Why glass-based electrolytes? • Preparation of lithium ion conducting glasses and glass-ceramics • All-solid-state lithium secondary batteries using Li 2 S-based glass-ceramics • Preparation of glassy electrode materials for all- solid-state lithium secondary batteries - A new concept of all-glass-based battery systems • Conclusions

  3. Introduction

  4. Share of battery in the world Development of the battery business Development of the battery business others Development of miniaturized electric appliances Development of miniaturized electric appliances Korea Japan Li-ion battery China Change of energy density of batteries Development of lithium ion battery market s Li-ion r a e y 5 Li-ion 1 number amount g Amount / billion yen Ni-H n Energy density / Wh/L Number i r Ni-Cd u d x 2 . 5 Ni-H Ni-Cd The lithium ion secondary battery is very promising not only for miniaturized The lithium ion secondary battery is very promising not only for miniaturized electric appliances but also as a large energy storage device for HEV and EV. electric appliances but also as a large energy storage device for HEV and EV.

  5. There are serious safety problems present in lithium ion secondary batteries using flammable organic liquid electrolytes. All-solid-state lithium secondary battery system using non-flammable inorganic solid electrolytes ・ high safety ・ high reliability Ultimate goal of ・ high energy density rechargeable energy sources Studies on all-solid-state lithium secondary battery Thin-film battery Bulk-type battery Film battery ICAntenna Smart card EV

  6. Inorganic glassy solid electrolytes ………. very promising for use in all-solid-state batteries ・ wide selection of compositions ・ isotropic properties ・ no grain boundaries ・ easy film formation ・ nonflammability ・ etc.

  7. Inorganic glassy solid electrolytes 1. Ion conductivity is generally higher in glass than that in corresponding crystal due to the so-called “open structure.” Large amounts of free volume crystal glass 2. Single cation conduction is realized because glassy materials belong to the so-called “decoupled systems” in which the mode of ion conduction relaxation is decoupled from the mode of structural relaxation. Inorganic glassy electrolyte anode cathode cathode anode CoO2 C X- Li + Li + Li + Li + Li + Li + Ideal battery system Li + Li + Li + Li + Li + Li + X- with no side reactions Li + Li + Li + Li + Li + Li + Li + Li + Li + Li + Li + X- conventional battery all-solid-state battery

  8. Inorganic glassy solid electrolytes liquid 3. Superionic coducting crystals as a metastable phase are easily formed from inorganic glassy electrolytes. supercooled liquid 74AgI ・ 26(0.33Ag 2 O ・ 0.67MoO 4 ) e s a h p : α -AgI Intensity (arb.unit) Volume σ 25 =10 -1 Scm -1 c i n o i r e p u S s s a l g crystallization l a t s y r c Tg Tm Temperature Tatsumisago et al., NATURE , 354 (1991) 217; Chem. Lett. (2001) 814.

  9. Preparation of lithium ion conducting glasses and glass-ceramics

  10. Lithium Ion conducting glassy systems σ 25 / Scm -1 System Procedure Researcher Twin-roller quenching Nassau 10 -6 Li 2 O-Nb 2 O 5 Twin-roller quenching Tatsumisago 10 -6 Li 4 SiO 4 -Li 3 BO 3 10 -6 Sputtering Bates Li-P-O-N Melt quenching 10 -5 Souquet Li 2 S-GeS 2 Melt quenching Malugani 10 -4 Li 2 S-P 2 S 5 Melt quenching Levasseur 10 -4 Li 2 S-B 2 S 3 Twin-roller quenching Ribes 10 -4 Li 2 S-SiS 2 Melt quenching Kennedy Li 2 S-SiS 2 -LiI 10 -3 Melt quenching Malugani 10 -3 Li 2 S-P 2 S 5 -LiI Melt quenching 10 -3 Kondo Li 2 S-SiS 2 -Li 3 PO 4 Twin-roller quenching Tatsumisago 10 -3 Li 2 S-SiS 2 -Li 4 SiO 4 High Li + ion conduction in glass ・ Increase in Li + ion concentration as much as possible ・ Use of counter anions with high polarizability

  11. Temperature dependence of conductivity of a variety of high lithium ion conducting materials σ 25 =3.2x10 -3 Scm -1 10 0 LISICON Advanced Materials Li 2 S-SiS 2 -Li 4 SiO 4 glass Li 14 Zn(GeO 4 ) 4 Li 2 S-P 2 S 5 17 (2005) 918. glass-ceramics 10 -1 Li 2 S-SiS 2 glass NASICON Conductivity / S cm -1 Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 Thio-LISICON 10 -2 Li 3.25 Ge 0.25 P 0.75 S 4 Li 2 S-SiS 2 –P 2 S 5 -LiI glass Li 2 O-Nb 2 O 5 glass 10 -3 Li 2 O-Al 2 O 3 -TiO 2 -P 2 O 5 (OHARA gc) glass-ceramic Li 2 O-B 2 O 3 -LiI glass Li 3 N 10 -4 Li 3.4 V 0.4 Ge 0.6 O 4 Perovskite 10 -5 La 0.51 Li 0.34 TiO 2.94 Li 3.3 PO 3.8 N 0.22 glass ( LiPON ) 10 -6 1 1.5 2 2.5 3 3.5 4 1000 / T (K -1 )

  12. Mechanochemical preparation of 95(0.6Li 2 S ・ 0.4SiS 2 ) ・ 5Li 4 SiO 4 Mechanochemical synthesis glass ・ Room temperature process Planetary ball mill ・ Obtaining fine powders directly 。 。 。 。。 。 。 。 。 。 。 。 。 。 。 95(0.6Li 2 S ・ 0.4SiS 2 ) ・ 5Li 4 SiO 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 10 0 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 Melt quenched glass 。 。 。 。 。 。 。 。 。 。 。 。 。 。 Conductivity / S cm -1 10 -2 Rotation of base disk 10h,20h 10 -4 Rotation of pot 。 5h 。 。 。 。 。 。 。 Centrifugal force 。 10 -6 。 。 。 。 。 。 。 1h 。 。 。 。 。 。 。 。 。 。 。 10 -8 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 0h Ball 10 -10 2.0 2.5 3.0 3.5 pulverization Mechanical energy chemical reaction 1000K / T

  13. Temperature dependence of conductivity for the 70Li 2 S ・ 30P 2 S 5 glass and glass-ceramic 10 0 Conductivity / S cm -1 σ 25 = 3.2 x 10 -3 S/cm Heating at 360 ℃ glass Ea = 12 kJ/mol -2 10 σ 25 = 5.4 x 10 -5 S/cm -4 10 Ea = 38 kJ/mol -6 10 : thio-LISICON III Solid-state reaction : Li 3 PS 4 : Li 4 P 2 S 6 -8 10 Intensity (arb.unit) Solid-state reaction 3.2 3.4 1.8 2 2.2 2.4 2.6 2.8 3 : new phase 360 o C 1000 K / T as-prepared 1 0 1 5 2 0 2 5 3 0 3 5 4 0 2 θ / o (C u K α ) New superionic metastable crystalline phase The formation of superionic metastable phase is the most remarkable advantage of glass-based solid electrolytes. …….. could not be obtained by the usual solid state reaction.

  14. All-solid-state lithium secondary batteries using Li 2 S-P 2 S 5 glass-ceramics

  15. All-solid-state batteries ( In / Li 2 S-P 2 S 5 glass-ceramic / LiCoO 2 ) All-solid-state batteries ( In / Li 2 S-P 2 S 5 glass-ceramic / LiCoO 2 ) Laboratory-scale Negative electrode all-solid-state cell In or SnS-P 2 S 5 glass: SE:AB Stainless Solid electrolyte (SE) steel Li 2 S-P 2 S 5 glass ceramics Positive electrode Insulator LiCoO 2 :SE:AB=20:30:3 (wt%) or (S+CuS):SE:AB Current collector Stainless Solid electrolyte steel Solid AB electrolyte 10mm Composite electrode is a mixture of three kinds of fine powders LiCoO 2 Ionic and electronic conduction paths through SE and conducting additives to active materials

  16. Cell performance of the all-solid-state battery Cell performance of the all-solid-state battery In / 80Li 2 S ・ 20P 2 S 5 glass-ceramic / LiCoO 2 x in Li 1-x CoO 2 200 120 0 0.1 0.2 0.3 0.4 6 Capacity / mAh g -1 100 64 μ A . cm -2 25 o C 150 Efficiency / % 5 Cell Voltage / V 80 Charge 20, 50 4 5 1 100 60 3 5 40 2 1 20, 50 50 : Charge capacity 20 1 Discharge : Discharge capacity 0 0 0 0 20 40 60 80 100 120 0 100 200 300 400 500 Capacity / mAh . g -1 Cycle number Excellent cycle performance with no loss of capacity up to the cycle number of 500 The advantage of the glass-ceramics with their high conductivity and dense microstructure would promote smooth charge-discharge reaction in the solid / solid interface between electrolyte and electrode.

  17. All-solid-state cell performance using a variety of electrode active materials All-solid-state cell performance using a variety of electrode active materials In or In-Li / 80Li 2 S ・ 20P 2 S 5 glass-ceramic / Cathode 6 -2 64 μ A cm 100th Cycle 5 Cell Voltage / V In/LiNi 0.5 Mn 0.5 O 2 4 In/LiCoO 2 3 In-Li/a-V 2 O 5 2 1 In-Li/Li 4/3 Ti 5/3 O 4 0 0 20 40 60 80 100 120 140 160 -1 Capacity / mAh g All-solid-state batteries with high reversibility and high cycle performance

  18. For high rate performance 0.1 wt% coating ・ Coating on active materials with cobalt sulfide NaS 2 CN(C 2 H 5 ) 2 + CoCl 2 → Co[S 2 CN(C 2 H 5 ) 2 ] 2 → Co[S 2 CN(C 2 H 5 ) 2 ] 2 CoS I = 10 mA cm -2 (10C) In / 80Li 2 S-20 P 2 S 5 / LiCoO 2 -xCoS 0.1 wt% coating 6 2nd 2nd before -800 Without coating 3rd 1st 3rd 1st Cell Voltage / V (vs. In-Li) Z ” / Ω 5 after 1st charge -400 4 3 0 -800 before 0.1 wt% coating 2 Z ” / Ω 2nd 2nd -400 1 1st 1st after 1st charge 3rd 3rd 0 0 0 20 40 60 80 100 120 0 400 800 1200 1600 2000 Z’/ Ω -1 Capacity / mAh g

  19. Preparation of glassy electrode materials for all- solid-state lithium secondary batteries - A new concept of all-glass-based battery systems -

Recommend


More recommend