sohtaro kanda
play

Sohtaro Kanda / kanda@post.kek.jp 2016. 10. 13 at J-PARC dsys - PowerPoint PPT Presentation

Instrumentation for experiments with high-intensity pulsed muon beam MuSEUM experiment 1 Sohtaro Kanda / kanda@post.kek.jp 2016. 10. 13 at J-PARC dsys workshop Production of Muon 2 Proton driver positive pion proton graphite


  1. Instrumentation for experiments with high-intensity pulsed muon beam MuSEUM experiment 1 Sohtaro Kanda / kanda@post.kek.jp 2016. 10. 13 at J-PARC dsys workshop

  2. Production of Muon 2 ■ Proton driver positive pion proton graphite negative pion ■ Parity violating pion decay muon pion 4 MeV at pion rest frame neutrino spin polarized 2016. 10. 13 at J-PARC dsys workshop

  3. Decay of Muon 3 ■ Parity violating muon decay µ + → e + + ν e + ν µ neutrinos muon positron Cosine of emission angle to muon spin Positron energy (MeV) Positron energy/52 MeV Positron energy spectrum Positron angular asymmetry 2016. 10. 13 at J-PARC dsys workshop

  4. Muon Spin Dynamics 4 ■ Muon spin rotation and relaxation spin In the presence of B-field, muon spin rotates with Larmor frequency ω µ = − qg µ muon B 2 m µ B-field Spin relaxation occurs due to the B-field distribution ■ Decay positron time spectrum Muon is a powerful probe for local magnetic field thanks to its spin dynamics and self-analyzing feature G. Bennett, et al ., PRD 73 (2006) 2016. 10. 13 at J-PARC dsys workshop

  5. Pulsed and Continuous Muon Beam 5 ■ Pulsed beam : J-PARC, RAL 40 ms ■ Higher event rate 100 ns ... ■ Higher S/N ■ Limited timing resolution ■ Pulse synchronized trigger time 600 ns periodic timing ■ Ensemble average ■ Continuous (DC) beam : PSI, TRIUMF , MuSIC ■ Less event rate ■ Less S/N ■ High timing resolution ■ Necessity of trigger counter time ■ Event-by-event analysis random timing 2016. 10. 13 at J-PARC dsys workshop

  6. Muon Precision Physics 6 ■ Measured muon properties Method Beam Precision Stat. Syst. Ref. Muonium HFS DC Liu Mass 120 ppb 117 ppb 38 ppb spectroscopy (Chopped) 1999 Decay Mean Tishchenko DC positron 1 ppm 0.96 ppm 0.32 ppm lifetime 2013 (Accumulated) counting Decay positron Bennet g-2 Pulse 540 ppb 463 ppb 283 ppb tracking in 2007 storage ring 2016. 10. 13 at J-PARC dsys workshop

  7. Muon Precision Physics 7 ■ Muon as a probe for new physics search Method Beam Limit Exp. 52.8 MeV e + and γ PSI MEG μ + ->e + γ DC Br<4.2x10 -13 back to back 2016 PSI μ - N->e - N 105 MeV e - DC Br<7x10 -13 SINDRUM-II 2006 PSI μ ->eee e - tracking DC Br<1.0x10 -12 SINDRUM-I 1988 BNL E821 g-2 μ + in storage ring Pulse Δ a μ (Exp.-Th.)=289(80)x10 -11 2006 BNL E821 EDM μ + in storage ring Pulse d μ <1.9 x 10 -19 e cm 2009 Lorentz μ + e - LAMPF DC 2x10 -23 GeV Violation spectroscopy 1999 μ + e - - μ - e + PSI e + e - annihilation DC P<8.3x10 -11 conversion 1999 2016. 10. 13 at J-PARC dsys workshop

  8. Towards Higher Precision 8 ■ Precision muon physics with continuous muon beam has been limited by statistical uncertainty. ■ When statistical precision is improved severalfold, systematic uncertainty limits the measurement precision ■ To explore the new frontier of precision muon physics with high-intensity pulsed muon beam, both ■ High-rate capable detector ■ Precision control and monitoring of environment ■ are of importance ■ In this talk, as an example of new generation of muon precision measurement, MuSEUM experiment is introduced. 2016. 10. 13 at J-PARC dsys workshop

  9. Muonium Energy Levels 9 Energy Level/HFS RF 10 ν 12 8 6 4 Muonium HFS 2 0 δν =4.463 GHz B-Field 2 − muon electron 4 − ν 12 + ν 34 = δ ν 6 − ν 34 8 − ν 12 − ν 34 ∝ µ µ /µ p 10 − 0 0.5 1 1.5 2 2.5 3 Magnetic field (T) δ ν = (16 or 3 α 2 R 1 cg e g 0 µ )(1 + m e /m µ ) � 3 (1 + δ QED ) ■ Direct measurement at zero magnetic field ( δν ) ■ Indirect measurement under a high magnetic field ( ν 12 and ν 34 ) ■ Our goal is x10 improvement for both experiments 2016. 10. 13 at J-PARC dsys workshop

  10. MuSEUM Experiment 10 Upstream Counter 1. Muonium formation Experimental 2. RF spin flip Procedure 3. Positron asymmetry Muonium decay e+ polarized muon beam RF Tuning Bar RF Cavity Online Beam Monitor Positron Counter Kr Gas Chamber 2D cross-configured Segmented fiber hodoscope scintillation counter “Zero” or High B-Field 2016. 10. 13 at J-PARC dsys workshop

  11. MuSEUM Instruments 11 ■ Positron counter ■ Online beam profile monitor ‣ Segmented ‣ Fiber hodoscope scintillator+SiPM ‣ Beam monitoring ‣ Positron counting ‣ Minimum amount of ‣ High rate capability material is required is required ■ Offline beam profile monitor ■ Background monitor ‣ Lq. scint.+WFD ‣ IIF+CCD beam ‣ Neutron/Gamma/ imager ‣ 3D muon stopping Positron discrimination distribution ‣ Self trigger ‣ Beam tuning 2016. 10. 13 at J-PARC dsys workshop

  12. DAQ Overview 12 Hold Beam Sync. Online Beam Online Monitor Pulse Profile Monitor Peak Holding ADC 25 Hz Common Start Data Writing Positron Counter Multi Hit TDC Time Stamp Gas Pressure B-Field Event Builder RF Power Temperature Environmental Monitors 2016. 10. 13 at J-PARC dsys workshop

  13. Positron Counter 13 ■ Scintillator pixel+SiPM+Kalliope (ASD+multi-hit TDC) 3 mmt 240 mm 10 mm Hamamatsu MPPC 576 ch/layer x 2 layers 1.3 mm x 1.3 mm active area 50 μ m pixel pitch ■ Two layers of segmented scintillation counter ■ 10 mm × 10 mm × 3 mmt unit cell , 240 mm × 240 mm detection area ■ High rate capability and tolerance to a high magnetic field S. Kanda, PoS(PhotoDet2015) 039 (2016) 2016. 10. 13 at J-PARC dsys workshop

  14. Frontend Electronics 14 ■ Kalliope: KEK Advanced Linear and Logic-board Integrated Optical detectors for Positrons and Electrons Trigger ASIC FPGA input Ethernet MPPC input Power HV input is on supply the other side Fast ■ 32ch inputs for MPPC ■ ASIC implemented amplifier, shaper, discriminator ■ FPGA programmed multi-hit TDC (common start) ■ SiTCP data transfer M. M. Tanaka, K. M. Kojima, T. Murakami, S. Kanda, C de la Taille and A. Koda, “MPPC frontend module for muon spin resonance spectrometer” (to be published) 2016. 10. 13 at J-PARC dsys workshop

  15. MPPC on PCB 15 ■ Eight layered PCB for MPPC mount PCB with mounted MPPCs Micro strip line impedance was adjusted to 50 Ohm Circuit Design 2016. 10. 13 at J-PARC dsys workshop

  16. White Paper Mask 16 ■ White paper mask for light di ff used and position marker h25pe h25pe Entries 710 Entries 1260 70 25 Mean 62.48 Mean 35.78 RMS 23.25 21.73 RMS Integral 324 Integral 681 60 20 50 15 40 30 10 20 5 10 0 0 20 40 60 80 100 120 20 40 60 80 100 120 # of photon # of photon White paper Black paper Photo detection comparison White paper mask on a PCB as between black and white paper position marker and reflector mask 2016. 10. 13 at J-PARC dsys workshop

  17. Reflector Film 17 ■ Thin polymer film with folding for light reflection ESR ribbons to be inserted Laser cut ESR Folded film bands are inserted between sides of scintillators N. Inadama et al ., IEEE Transactions on Nuclear Science, 51, 1 (2004) 2016. 10. 13 at J-PARC dsys workshop

  18. Positron Detector Assembly 18 2016. 10. 13 at J-PARC dsys workshop

  19. Assembled Positron Detector 19 240 mm Fully assembled scintillator segments ESR top cover Top cover was placed for scintillator protection 2016. 10. 13 at J-PARC dsys workshop

  20. Installation 20 Positron Counter Fiber Beam Profile Monitor w/Al Absorber Muon Beam Kr Gas Chamber (RF Cavity inside) 200 mm Three layers of magnetic shield 2016. 10. 13 at J-PARC dsys workshop

  21. Hit Map on the Detector Plane 21 vertical position (cm) ) m c ( n o i t i s o p l a t n o z i r o h 2016. 10. 13 at J-PARC dsys workshop

  22. Time Spectrum 22 Time spectrum of coincidence hit Instantenious event rate was 10 MHz at maximum 30 coincidence hit per pulse 2016. 10. 13 at J-PARC dsys workshop

  23. − − − − − − − − − − − − High-Rate Capability − − 23 − − − − − − 0.2 Count - Fit / Fit 0.15 0.1 0.05 0 − 0.05 − − 0.1 − − − − 0.15 − − 0.2 0 2000 4000 6000 8000 10000 time (ns) 5% of pileup loss at the highest event rate Systematic uncertainty due to the pileup loss is negligible 2016. 10. 13 at J-PARC dsys workshop

  24. Fiber Beam Profile Monitor 24 100 mm MPPC inside fiber array ■ Cross-configured fiber hodoscope with SiPM readout ■ To be placed in front of the target chamber ■ Online monitoring of beam profile and intensity ■ Minimum amount of material is required S. Kanda, RIKEN Accelerator Progress Report Vo. 48 (2015) 2016. 10. 13 at J-PARC dsys workshop

  25. Scintillation Fiber Array 25 100 mm 100 um 40 fibers are Resin 25 μ bundled for a ch. Fiber 100 μ and connected Polyimide 25 μ to MPPC Fiber array layer structure 2016. 10. 13 at J-PARC dsys workshop

  26. Fiber Thickness Uniformity 26 layer thickness (um) Total thickness including 3% of Uniformity fibers, resin, and substrate 2016. 10. 13 at J-PARC dsys workshop

  27. Assembled Fiber Monitor 27 2016. 10. 13 at J-PARC dsys workshop

  28. Installation 28 Positron Counter Fiber Beam Profile Monitor w/Al Absorber Muon Beam Kr Gas Chamber (RF Cavity inside) 200 mm Three layers of magnetic shield 2016. 10. 13 at J-PARC dsys workshop

Recommend


More recommend