soft and hard scale qcd dynamics in mesons
play

Soft and Hard Scale QCD Dynamics in Mesons Peter Tandy Center for - PowerPoint PPT Presentation

Soft and Hard Scale QCD Dynamics in Mesons Peter Tandy Center for Nuclear Research Kent State University Mazatlan Nov09 p. 1/5 Topics Overview of DSE modeling of meson physicsmainly soft scale Masses, decays, form factors Including


  1. Soft and Hard Scale QCD Dynamics in Mesons Peter Tandy Center for Nuclear Research Kent State University Mazatlan Nov09 – p. 1/5

  2. Topics Overview of DSE modeling of meson physics—mainly soft scale Masses, decays, form factors Including a hard scale: DIS: quark distributions in π, K mesons Mesons involving a heavy quark Summary Mazatlan Nov09 – p. 2/5

  3. Lattice-QCD and DSE-based modeling � q, q, G ) e −S [¯ q,q,G ] Lattice: �O� = D ¯ qqG O (¯ Euclidean metric, x-space, Monte-Carlo Issues: lattice spacing and vol, sea and valence m q , fermion Det Large time limit ⇒ nearest hadronic mass pole δq ( x ) e −S [¯ δ q,q,G ]+(¯ η,q )+(¯ q,η )+( J,G ) � EOMs (DSEs): 0 = D ¯ qqG Euclidean metric, p-space, continuum integral eqns Issues: truncation and phenomenology—not full QCD Analtyic contin. ⇒ nearest hadronic mass pole Can be quick to identify systematics, mechanisms, · · · Mazatlan Nov09 – p. 3/5

  4. DSE-based modeling of Hadron Physics Soft physics: truncate DSEs to min: 2-pt, 3-pt fns Should be relativistically covariant—-convenient for decays, Form Factors, etc No boosts needed on wavefns of recoiling bound st. ∞ d.o.f. → few quasi-particle effective d.o.f. Do not make a 3-dimensional reduction Preserve 1-loop QCD renorm group behavior in UV Preserve global symmetries, conserved em currents, etc Preserve PCAC ⇒ Goldstone’s Thm Can’t preserve local color gauge covariance—-just choose Landau gauge [RG fixed pt] Parameterize the deep infrared (large distance) QCD coupling Mazatlan Nov09 – p. 4/5

  5. Constraints on Modeling Preserve vector WTI, and axial vector WTI E.g. τ τ − iP µ Γ 5 µ ( k ; P ) = S − 1 ( k + ) γ 5 2 S − 1 ( k − ) 2 + γ 5 − 2 m q ( µ ) Γ 5 ( k ; P ) ⇒ kernels of DSE q and K BSE are related Ladder-rainbow is the simplest implementation Goldstone Theorem preserved, ps octet masses good, indep of model details π ( p 2 ) = iγ 5 4 tr S − 1 [ 1 Γ 0 0 ( p 2 )] + · · · DCSB ⇒ π : f 0 π Here, 1-body and 2-body systems are the same Mazatlan Nov09 – p. 5/5

  6. Ladder-Rainbow Model K • λ a λ a 4 πα eff ( q 2 ) D free K BSE → − γ µ µν ( q ) γ ν 2 2 qq � µ =1 GeV = − (240 MeV ) 3 , incl vertex dressing → α eff ( q 2 ) IR � ¯ α eff ( q 2 ) → α 1 − loop ( q 2 ) s UV p-k -1 -1 = + p p k P . Maris & P .C. Tandy, PRC60, 055214 (1999) M ρ , M φ , M K ⋆ good to 5%, f ρ , f φ , f K ⋆ good to 10% Mazatlan Nov09 – p. 6/5

  7. Summary of light meson results Vector mesons (PM, Tandy, PRC60, 055214) Range of light meson observables m u = d = 5 . 5 MeV , m s = 125 MeV at µ = 1 GeV m ρ / ω 0.770 GeV 0.742 Pseudoscalar (PM, Roberts, PRC56, 3369) f ρ / ω 0.216 GeV 0.207 expt. calc. m K ⋆ 0.892 GeV 0.936 qq � 0 (0.236 GeV) 3 (0.241 † ) 3 - � ¯ µ f K ⋆ 0.225 GeV 0.241 0.138 † m π 0.1385 GeV m φ 1.020 GeV 1.072 0.093 † f π 0.0924 GeV f φ 0.236 GeV 0.259 0.497 † m K 0.496 GeV Strong decay (Jarecke, PM, Tandy, PRC67, 035202) f K 0.113 GeV 0.109 g ρππ 6.02 5.4 Charge radii (PM, Tandy, PRC62, 055204) g φ KK 4.64 4.3 r 2 0.44 fm 2 0.45 π g K ⋆ K π 4.60 4.1 r 2 0.34 fm 2 0.38 K + Radiative decay (PM, nucl-th/0112022) r 2 -0.054 fm 2 -0.086 K 0 g ρπγ / m ρ 0.74 0.69 γπγ transition (PM, Tandy, PRC65, 045211) g ωπγ / m ω 2.31 2.07 g πγγ 0.50 0.50 ( g K ⋆ K γ / m K ) + 0.83 0.99 r 2 0.42 fm 2 0.41 ( g K ⋆ K γ / m K ) 0 πγγ 1.28 1.19 Weak K l 3 decay (PM, Ji, PRD64, 014032) Scattering length (PM, Cotanch, PRD66, 116010) λ + ( e 3 ) 0.028 0.027 a 0 0.220 0.170 0 7.6 · 10 6 s − 1 Γ ( K e 3 ) 7.38 a 2 0.044 0.045 0 5.2 · 10 6 s − 1 Γ ( K µ 3 ) 4.90 a 1 0.038 0.036 1 bsampl Mazatlan Nov09 – p. 7/5

  8. DSE kernel constrained from Lattice QCD Mazatlan Nov09 – p. 8/5

  9. Lattice-assisted DSE Results 2.0 1.8 Evident vertex enhancement 1.6 2 ) v ( p Curvature in low m q depn 1.4 M IR ( p 2 ) 40% below linear 1.2 Chiral Extrapolation 1.0 0 2 4 6 8 10 2 (GeV 2 ) p qq � qu − lat µ =1 GeV = − (190 MeV) 3 � ¯ 0.400 qq � qu − lat ≈ � ¯ qq � expt / 2 � ¯ 2 ) (GeV) f π 30% low 0.300 2 = 0.38 GeV 0.200 M ( p 0.100 0.000 0.025 0.050 0.075 0.100 0.125 m ( ζ =19 GeV) (GeV) Mazatlan Nov09 – p. 9/5

  10. Qu-lattice S ( p ) , D ( q ) mapped to a DSE kernel S ( p ) = Z ( p ) [ i � p + M ( p )] − 1 Old data New ’improved action’ data m q = 0.168GeV m q = 0.030GeV 0.5 m q = 0.225GeV m q = 0.055GeV 0.4 m q = 0.110GeV M (p) [GeV] m q = 0.0GeV 0.3 0.2 0.1 0 0 1 2 3 4 p [GeV] Mazatlan Nov09 – p. 10/5

  11. Quenched lattice ⇒ m q Depn of DSE Kernel 4 10 DSE-LR (MT) 2 ,m=0)*D(q 2 ) V(q 3 10 2 10 2 2 )/q 1 10 4 π α eff (q 0 10 -1 10 chiral quark -2 10 -3 10 -2 -1 0 1 2 3 10 10 10 10 10 10 2 [GeV 2 ] q Bhagwat,Pichowsky,Roberts,Tandy, PRC68, 015203 (2003) Mazatlan Nov09 – p. 11/5

  12. Quenched lattice ⇒ m q Depn of DSE Kernel 4 10 DSE-LR (MT) 2 ,m=0)*D(q 2 ) V(q 3 10 2 , m u )*D(q 2 ) V(q 2 10 2 2 )/q 1 10 4 π α eff (q 0 10 -1 10 u-quark -2 10 -3 10 -2 -1 0 1 2 3 10 10 10 10 10 10 2 [GeV 2 ] q Bhagwat,Pichowsky,Roberts,Tandy, PRC68, 015203 (2003) Mazatlan Nov09 – p. 11/5

  13. Quenched lattice ⇒ m q Depn of DSE Kernel 4 10 DSE-LR (MT) 2 ,m=0)*D(q 2 ) V(q 3 10 2 , m u )*D(q 2 ) V(q 2 , m s )*D(q 2 ) V(q 2 10 2 2 )/q 1 10 4 π α eff (q 0 10 -1 10 s-quark -2 10 -3 10 -2 -1 0 1 2 3 10 10 10 10 10 10 2 [GeV 2 ] q Bhagwat,Pichowsky,Roberts,Tandy, PRC68, 015203 (2003) Mazatlan Nov09 – p. 11/5

  14. Quenched lattice ⇒ m q Depn of DSE Kernel 4 10 DSE-LR (MT) 2 ,m=0)*D(q 2 ) V(q 3 10 2 , m u )*D(q 2 ) V(q 2 , m s )*D(q 2 ) V(q 2 10 2 , m c )*D(q 2 ) V(q 2 2 )/q 1 10 4 π α eff (q 0 10 -1 10 c-quark -2 10 -3 10 -2 -1 0 1 2 3 10 10 10 10 10 10 2 [GeV 2 ] q Bhagwat,Pichowsky,Roberts,Tandy, PRC68, 015203 (2003) Mazatlan Nov09 – p. 11/5

  15. Quenched lattice ⇒ m q Depn of DSE Kernel 4 10 DSE-LR (MT) 2 ,m=0)*D(q 2 ) V(q 3 10 2 , m u )*D(q 2 ) V(q 2 , m s )*D(q 2 ) V(q 2 10 2 , m c )*D(q 2 ) V(q 2 2 , m b )*D(q 2 ) 2 )/q V(q 1 10 4 π α eff (q 0 10 -1 10 b-quark -2 10 -3 10 -2 -1 0 1 2 3 10 10 10 10 10 10 2 [GeV 2 ] q Bhagwat,Pichowsky,Roberts,Tandy, PRC68, 015203 (2003) Mazatlan Nov09 – p. 11/5

  16. Quark Confinement—positivity violation Confinement/positivity analysis (Osterwalder-Schrader axiom No. 3) Fourier transf σ S ( p 4 , � p = 0) to Eucl time T 0 10 -1 10 -2 10 | ∆ S ( T )| -3 10 -4 10 -5 10 -6 10 0 10 20 30 5 15 25 -1 ) T (GeV solid = lattice prop, dashed = MT DSE, dotted = cc pole eg Mazatlan Nov09 – p. 12/5

  17. DSE and Lattice results for M V and M ps Mazatlan Nov09 – p. 13/5

  18. Pion electromagnetic form factor d 4 q � Λ µ = ( P ′ + P ) µ F π ( Q 2 ) Γ π S i Γ µ S Γ π S � ¯ � = N c (2 π ) 4 Tr π γ π Mazatlan Nov09 – p. 14/5

  19. Pion F ( Q 2 ) : Low Q 2 Mazatlan Nov09 – p. 15/5

  20. Kaon F ( Q 2 ) : Low Q 2 Mazatlan Nov09 – p. 16/5

  21. Pion electromagnetic form factor 0.5 0.4 2 ] 2 ) [GeV 0.3 2 F π (Q Our prediction 0.2 VMD ρ pole Q CERN ’80s 0.1 Cornell ’70s 0 0 1 2 3 4 2 [GeV 2 ] Q PM and Tandy, PRC62,055204 (2000) [nucl-th/0005015] Mazatlan Nov09 – p. 17/5

  22. Pion electromagnetic form factor 0.5 0.4 2 ] 2 ) [GeV 0.3 2 F π (Q Our prediction 0.2 VMD ρ pole Q CERN ’80s 0.1 JLab, 2001 0 0 1 2 3 4 2 [GeV 2 ] Q JLab data from Volmer et al , PRL86, 1713 (2001) [nucl-ex/0010009] PM and Tandy, PRC62,055204 (2000) [nucl-th/0005015] Mazatlan Nov09 – p. 17/5

  23. Pion electromagnetic form factor 0.5 Our prediction VMD ρ pole 0.4 2 ] CERN ’80s 2 ) [GeV JLab, 2001 JLab at 12 GeV 0.3 pert. QCD 2 F π (Q JLab, 2006b 0.2 JLab, 2006a Q 0.1 0 0 2 4 6 2 [GeV 2 ] Q PM and Tandy, PRC62,055204 (2000) [nucl-th/0005015] 2006a: V. Tadevosyan et al , [nucl-ex/0607007], 2006b: T. Horn et al , [nucl-ex/0607005] Mazatlan Nov09 – p. 17/5

  24. 1-loop chiral correction to r π vs m π 0.5 Ladder-rainbow DSE Expt 0.4 2 C / f π 1--loop Ch PT r /f π 2 2 ] Ch PT contact/core term 12 L 9 0.3 2 [ fm r π 0.2 0.1 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 m π [GeV] P . Maris and PCT, in preparation Mazatlan Nov09 – p. 18/5

  25. 1-loop chiral correction to r π vs m π 0.5 Ladder-rainbow DSE Expt 0.4 2 C / f π 1--loop Ch PT r /f π 2 2 ] Ch PT contact/core term 12 L 9 0.3 2 [ fm r π 0.2 0.1 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 m π [GeV] P . Maris and PCT, in preparation Mazatlan Nov09 – p. 18/5

  26. γ ⋆ π 0 → γ Transition Form Factor Q 1.0 1.0 0.9 CELLO 0.8 CLEO P-Q/2 P+Q/2 0.0 0.1 all 8 covariants 5 covariants BL monopole 0.6 2 )/g expt f(Q Abelian axial anomaly + π pole 0.4 in Γ 5 µ ⇒ G (0 , 0) Chiral limit G (0 , 0) = 1 0.2 2 ⇒ Γ πγγ to 2% 0.0 0.0 1.0 2.0 3.0 2 [GeV 2 ] Q Mazatlan Nov09 – p. 19/5

  27. γ ⋆ πγ ⋆ Asymptotic Limit Lepage and Brodsky, PRD22, 2157 (1980): LC-QCD/OPE ⇒ 0 10 DSE results VMD dipole bare vertices 2 f π 2 / Q 2 (4/3) π -1 10 2 ) 2 ,Q -2 10 F(Q -3 10 -4 10 -2 -1 0 1 2 3 10 10 10 10 10 10 2 [GeV 2 ] Q Mazatlan Nov09 – p. 20/5

Recommend


More recommend