search for new physics search for new physics with b
play

Search for New Physics Search for New Physics with B-Mesons with - PowerPoint PPT Presentation

Search for New Physics Search for New Physics with B-Mesons with B-Mesons Stefan Spanier University of Tennessee 1 Stefan Spanier Energy budget of Universe Dark Energy: ~70% Dark Matter: ~25% ~25% Antimatter: 0% ~70% 2


  1. Search for New Physics Search for New Physics with B-Mesons with B-Mesons Stefan Spanier University of Tennessee 1 Stefan Spanier

  2. • Energy budget of Universe Dark Energy: ~70% Dark Matter: ~25% ~25% Antimatter: 0% ~70% 2 Stefan Spanier

  3. • Understanding the Small = Understanding the Big ? matter In Big-Bang Cosmology Universe  initially contained equal amounts anti-matter  of matter, anti-matter and photons photons Most particles & anti-particles annihilated each other while the   Universe was still very dense to  form photons. Today’s (visible) Universe has a lot of cosmic micro- wave photons and a tiny bit of matter:  One baryon per  10 9 microwave photons. Only one anti-particle per 10 9 particles. T< 3K Sometime a process distinguishing particles from anti-particles was at work… 3 Stefan Spanier

  4. • Baryogenesis 3 fundamental conditions to construct a baryon asymmerty A. Sakharov Toy Model of Baryogenesis _ Rate r _ q q,l Condition II : r  r CP Violation _ _ Condition I q q,l _ Rate r _ B anti-symmetric q q q _ _ q q q _ freeze out q q _ q q q _ q q q Condition III B symmetric Non-equilibrium Standard Model provides the ingredients ! 4 Disclaimer: There are many realizations, but all need CP violation. Stefan Spanier

  5. • Standard Model - CP Symmetry C : charge conjugation (particle – antiparticle) -x P : parity P x = -x , P( x  v ) = ( x  v ) x For decay of particle X into final state f: _ _ CP ( X  f ) = X  f • A difference between decay rates of a particle and its Anti-particle implies CP violation.  CP violation can be ingredient to explain ratio of matter to anti-matter. - C and P maximally violated in the Standard Model - 1964 CP violation observed in neutral kaon decays ! 5 Stefan Spanier

  6. 10 -35 s 10 28 K Grand Unification Transition It may have happened 10 -10 s 10 15 K Electroweak Era (100 GeV) 10 -6 s 10 13 K Quark-Hadron transition here ! But … (1 GeV) 10 9 K Nucleosynthesis 1 min light elements created SM Higgs is heavy (125 GeV [LHC]) 1 Byr 20 K Galaxies form  no departure from thermal equilibrium 14 Byr 3 K Today CP violation in the Standard Model is 10 orders of magnitude too small ! Something else has happened ! B-factory can reach > 10 16 K … ~ 6 Stefan Spanier

  7. • Standard Model of Particle Physics particles anti-particles _ _ _ Charge Charge u c t d s b + 2/3 + 1/3 Quarks _ _ _ - 1/3 - 2/3 d s b u c t B=1/3 B=-1/3 C Baryon number e -     _ _ _  e     -1 0 Leptons e +      e     0 +1 L=1 L=-1 Lepton number Standard Model mass _ C: Charge conjugation symmetry p : anti-proton _ u _ _ C p = p d _ u In today’s accelerators (cosmic rays) particles and anti-particles are created and annihilate in pairs ! 7 Stefan Spanier

  8. • CP Violation in the Standard Model W b c,u u c t CKM matrix - parametrize transitions with  d 3 strengths and one complex phase  s  b ~ 1     ,  (  ) the phase is accessible   arg( ) with B mesons ! t d _  b d arg( ) u b   DK, K  … J/  K 0 ,  K 0 , D*D* … (0,0) (1,0) CP magnitude ~ triangle area) Branching Fractions < 10 -4 / 8 Stefan Spanier

  9. • CP Violation Phenomenology Quantum Mechanics 101 To observe CP-violation (phase) a particle decay needs to depend on at least two complex amplitudes A 1 and A 2 decay rate  amplitude 2 • Only one amplitude: |A 1 | 2 = |a 1 e i  1 | 2 = |a 1 | 2  rate not sensitive to phase • Two amplitudes: |A 1 + A 2 | 2 = |a 1 e i  1 + a 2 e i  2 | 2 2 + a 2 2 + 2 a 1 a 2 cos(  1 –  2 ) = a 1  rate depends on phase 9 Stefan Spanier

  10. • Relevant Amplitudes in B-Meson Decays Tree amplitude Penguin Amplitude e.g. B 0  J/  K 0 e.g. B 0   K 0 S S _ W _ _ _ _ b c t J/   b s c s B 0 W gluon B 0 _ _ _ s s K 0 K 0 d d S d d S weak coupling * * ~V cb V cs ~V tb V ts • Penguins allow for Physics Beyond ~ _ _ g s  s b b s the Standard Model ! b d ( δ 23 RR ) ~ + η ’ b • Different Penguins in different ways R s s ~ g s 0 s B _ R e.g. additional Phase from s s s Supersymmetry ? Ks K 0 d d d S d d d Study Penguins !!! new coupling 10 Stefan Spanier

  11. • Direct CP Violation _ _ Rate(B 0  f )  Rate(B 0  f ) •CP violation  hadronic time    i i A a e e i i i i  : weak phases  : strong phases i i Rate difference:          R R - 2 a i a sin( ) sin( ) j i j i j i , j Short range, long range (rescattering) hadronic interactions need to be understood ! New Physics can change the expected rates. 11 Stefan Spanier

  12. _ • Direct CP Violation in B 0  K +  - (B 0  K -  + )  From 454 million neutral B decays reconstruct 1606 signals. Challenge: distinguish K +  - from  +  - and K + K - which are also present.     - 0 N K-  + N K+  - B K B A B AR      0 Asymmetry B K N K-  + N K+  - + = -0.133  0.030 stat  0.009 syst 4.2  [ Phys.Rev.Lett. 93 (2004) 131801]  Significant asymmetry (13%) is 100,000 stronger than the one measured in neutral kaon decays.  Bang on Standard Model expectation 12 Stefan Spanier

  13. _ • B 0 B 0 Oscillation Measurement _ B 0 , B 0 can oscillate (mix) into each other  one more amplitude  e W - e - t c b d _ D - W W 0 0 B d B d Box amplitude: - - - - t c d b * ~ V tb V td W + e + Characteristic decay products tag the B 0 flavor:  e unmix – mix A mix (  t) = unmix + mix N(e + e - ) – N(e - e - /e + e + ) = N(e + e - ) + N(e - e - /e + e + ) D  D cos (  m d  t)   (  t) 6.3 ps 12.6 ps  m d = 0.493  0.012 stat  0.009 sys ps -1 13 Stefan Spanier

  14. • CP Violation in Interference between Mixing and Decay Observe as an asymmetry between transitions of particle % anti-particle. The cleanest way is via a decay of B 0 into a CP eigenstate: flavor tag _ Quantum B 0 entangled S /  K 0 J/  K 0 B 0 S e + e -  Y(4S) (golden modes) _ B 0 time mixing  contains CP phase) sin2  = 0 : no CP violation S and  K 0 sin2   0.7 : expected in Standard Model for J/  K 0 S with 4% theoretical uncertainty in SM, only. 14 Stefan Spanier

  15. • CP Violation in Interference between Mixing and Decay Observe as an asymmetry between transitions of particle % anti-particle. The cleanest way is via a decay of B 0 into a CP eigenstate:  flavor tag _ Quantum B 0 entangled B 0 e + e -  Y(4S)  K 0 _ S B 0 time mixing + direct CP violation 15 Stefan Spanier

  16. • B Meson Production Use Electron-Positron collider _ – Y(4S) resonance decays nearly 100% into B-meson pairs (B + B - ,B 0 B 0 ) – Accelerator can be tuned in; production just above threshold  – Clean environment _ – Coherent B 0 B 0 production b e + d  L = 1 e - [CLEO] - d e +  hadrons b e - Y(4s) uu,dd,ss ~ 2.1 nb d ~ 30  m cc ~ 1.3 nb bb ~ 1.05 nb PEP-II B A B AR Off On (energy) mass(B) = 5.28 GeV/c 2  E M ( MeV )  CM ( 4 S ) 16 Stefan Spanier

  17. • Asymmetry Measurement with BaBar   , e  , K  LEP/CDF Flavor tag Partial reconstruction perfect B  time e + 3 GeV resolution   e - : 9 GeV K S B    resolution function J/   e   z L     B Decay Time (ps) Full reconstruction B Factories e      perfect time resolution Lorentz Boost  =0.56  z> = <  t>  c ~ 250  m .. instead of ~ 30  m in CM  B Decay Time Difference (ps) 17 Stefan Spanier

  18. 330 M BB pairs Run5 BaBar integral luminosity fb -1 Run4 1650 mA e - 2500 mA e + 4 ns bunch spacing Run3 ~ 8 BB pairs / s Run2 Run1 Y(4s) - 40 MeV 18 2000 2006 Stefan Spanier

  19. • BaBar Collaboration • 10 countries • 63 institutions • ~550 physicists 19 Stefan Spanier

  20. • BaBar Detector Silicon Vertex Tracker 5 layers of double sided Si strips DIRC 144 synthetic fused silica bars 11000 PMTs e + Drift Chamber 40 axial stereo layers e - 1.5T Solenoid Electromagnetic Calorimeter Instrumented Flux Return 6580 CsI(Tl) crystals 19 layers of RPCs Limited Streamer tubes in upper/lower barrel sextant 20 Stefan Spanier

  21. • The Cherenkov Detector   , e  , K  B  (~80%) cos  C (  ) =      v/c  n(  ) identify particle also by measuring the identify particle by measuring  C , number of photons N with momentum p is known from tracking: N  L sin 2  C L = pathlength in medium Number of photons Cherenkov angle [rad] in quartz for certain d track momentum [GeV/c] track momentum [GeV/c] 21 Stefan Spanier

Recommend


More recommend