sls at the paul scherrer institute psi villigen
play

SLS at the Paul Scherrer Institute (PSI), Villigen, Switzerland - PowerPoint PPT Presentation

Top-up Operation at the Swiss Light Source SLS at the Paul Scherrer Institute (PSI), Villigen, Switzerland SPring-8 12/03/02 Michael B oge 1 Top-up Operation at the Swiss Light Source SLS Team at PSI SPring-8 12/03/02 Michael


  1. “Top-up” Operation at the Swiss Light Source SLS at the Paul Scherrer Institute (PSI), Villigen, Switzerland SPring-8 12/03/02 Michael B¨ oge 1

  2. “Top-up” Operation at the Swiss Light Source SLS Team at PSI SPring-8 12/03/02 Michael B¨ oge 2

  3. “Top-up” Operation at the Swiss Light Source Contents • Layout of the SLS • Linac, Transferlines • Booster • Storage Ring (SR) • Beamlines and Insertion Devices • Important Subsystems for Top-up – Pulsed Magnets – Digital Power Supplies – Timing System – Digital BPM System • Stability - Slow Orbit Feedback • Top-up Operation • The Future SPring-8 12/03/02 Michael B¨ oge 3

  4. “Top-up” Operation at the Swiss Light Source SLS Layout • Linac – 100 MeV • Booster – 100 MeV to 2.7 GeV @ 3 Hz – ǫ x = 9 nm rad • Storage Ring (SR) – 2.4 (2.7) GeV, 400 mA – ǫ x = 5 nm rad • Initial Four Beamlines: MS – 4S , PX – 6S , SIS – 9L , SIM – 11M SPring-8 12/03/02 Michael B¨ oge 4

  5. “Top-up” Operation at the Swiss Light Source Linac - Design 100 MeV, 3 GHz S-Band “turn key” System: • 90 kV grid gun: 1 ns pulse or 500 MHz train • Sub-Harmonic Pre-Buncher (500 MHz) • 4-cell Travelling Wave (TW) Buncher ( β = 0.6) • 16-cell TW Buncher ( β = 0.95 → 4 MeV) • 2 × 50 MeV TW Accelerating Structures (5.2 m, β = 1) SPring-8 12/03/02 Michael B¨ oge 5

  6. “Top-up” Operation at the Swiss Light Source Linac - Specifications, Diagnostics, Optics S L S 100 M e V P r e − I n j e c t o r L a y o u t D i a gno s t i c d e s c r i p t i on E x ce p t t h e I n t e g r a ti ng C u rr e n t T r a n s f o r m e r s ( s t a nd a r d I C T m on it o r s fr o m B e r go z ) a ll t h e d i a gno s ti c s h a v e b ee n d e v e l op e d a t PS I a nd op ti m i s e d t o c ov e r t h e l a r g e dyn a m i c r a ng e o f t h e S L S p r e − i n j ec t o r . F CU P − 1 ( C o a x i a l F a r a d a y C up ) − t r a n s i e n t b ea m m ea s . b e h i nd t h e gun a t 90 K e V . − b a nd w i d t h : > 6 GH z − ca n b e m ov e d i n t o a b ea m w it h pn e u m a ti c ac t u a t o r s W C M − 1 a nd W C M − 2 ( W a ll C u rr e n t M on it o r s ) − t r a n s i e n t b ea m m ea s . b e h i nd t h e gun a nd i n t h e t r a n s f e r li n e a t 100 M e V − c u t − o ff : < 100 k H z − b a nd w i d t h : ~ 4 GH z G un , bun c h i ng s ec t i on a nd f i r s t acce l e r a t i ng s t r u c t u r e I C T − 1 a nd I C T − 2 (I n t e g r a ti ng C u rr e n t T r a n s f o r m e r s ) − b ea m t r a n s m i ss i on e ff i c i e n c y t r ough L i n ac − r e s o l u ti on : < 5 % B P M ( s t r i p li n e B ea m P o s iti on M on it o r s ) − m i s m a t c h d e s i gn f o r h i gh s e n s iti v it y a nd m a x . a p e r t u r e f o r l o w c u rr e n t T op − up m od e S M s − O P T I CA L d i ag n o s t i c s − s i x op ti ca l S c r ee n M on it o r s ( S M ) h a v e b ee n u s e d du r i ng t h e c o mm i ss i on i ng . A ll S M h a v e b ee n i n t e n s i v e l y u s e d f o r f i n e b ea m a li gn m e n t a nd f o c u s op ti m i s a ti on . − S M − 5 a nd S M − E h a v e b ee n u s e d f o r e m itt a n ce a nd e n e r gy s p r ea d m ea s u r e m e n t s . − t w o d i ff e r e n t m on it o r s a r e i n s t a ll e d i n eac h S M s t a ti on f o r h i gh r e s o l u ti on m ea s u r e m e n t s o f t h e t r a n s v e r s e b ea m p a r a m e t e r s : a h i gh s e n s iti v it y YAG : C e d e t ec t o r f o r l o w c u rr e n t op e r a ti on ( c h a r g e < 1n C ) . a n A l − f o il p r odu c i ng O p ti ca l T r a n s iti on R a d i a ti on ( O T R ) . − a ll S M m on it o r s ca n b e m ov e d i n t o t h e b ea m w it h 3 s t a g e pn e u m a ti c ac t u a t o r s . O p t i c s R F d i s t r i bu t i on L o w e n er gy re g i o n ( up t o 10 M e V ) : − 31 s o l e no i d s . T w o 35 M W pu l s e d k l y s t r on s , T H 2100 fr o m T ho m s on , a r e D r i ft s ec t i o n a t 50 M e V : u s e d t o po w e r t h e t r a v e lli ng w a v e bun c h e r s a nd t h e − Q u a d r upo l e t r i p l e t t o m a t c h e s t h e b ea m t h r ough t h e acce l e r a ti ng s t r u c t u r e s . T h e po w e r d i s t r i bu ti on b e t w ee n s ec ond acce l e r a ti ng s t r u c t u r e . bun c h e r s a nd s ec ti on 1 i s p e rf o r m e d by m ea n s o f t w o v a r i a b l e po w e r s p litt e r s . T h e R F po w e r n ee d s f o r a 100 M e V L i n ac m a i n c o m pon e n t s op e r a ti on a r e li s t e d h e r e b e l o w . B ea m s p ec i f i ca t i on s T h e e l ec t r o n s o u rce : G oa l : − A 90 k V t r i od e gun w it h P i e r ce g e o m e t r y . I n t h e s i ng l e − F a s t i n j ec ti on i n t o t h e S L S s t o r a g e r i ng ( up t o 200 m A / m i n ) . bun c h m od e t h e ca t hod e i s pu l s e d w it h r e s p ec t t o t h e g r i d . M a x s i ng l e bun c h w i d t h 1n s 500 M H z p r e bun c h e r 500 W 0 . 2 − 0 . 9 µ s C o n s t r a i n t s : B un c h t r a i n l e ng t h I n t h e m u lti − bun c h m od e t h e g r i d i s m odu l a t e d a t 500 M a x C h a r g e 1 . 5n C ( bo t h m od e s ) 4 ce ll bun c h e r 2 . 7 M W M H z w it h r e s p ec t t o t h e ca t hod e . − N a rr o w a p e r t u r e s o f t h e i nnov a ti v e S L S boo s t e r s yn c h r o t r on . E n e r gy > 100 M e V T h e bun c h i n g s ec t i o n : − R a d i a ti on p r o t ec ti on li m it a ti on s . P u l s e − pu l s e e n e r gy s t a b ilit y < 0 . 25 % 16 ce ll bun c h e r 3 . 7 M W − SP B : 500 M H z s ub − h a r m on i c p r e − bun c h e r . M o d e s o f o p er a t i o n : R e l a ti v e e n e r gy s p r ea d < 0 . 5 % (r m s . ) N o r m a li ze d e m itt a n ce ( 1 σ ) < 50 π π mm m r a d A cce l e r a t i ng s ec t i on 1 11 . 5 M W − T W B 1 : 4 ce ll s t r a v e lli ng w a v e bun c h e r ( b = 0 . 6 , 2 p / 3 ) . − A s i ng l e bun c h m od e ( m a x . 1 . 5n C , 1n s ) . Si ng l e bun c h pu r it y < 0 . 01 − A v a r i a b l e m u lti bun c h m od e ( m a x . 1 . 5 n C ) . − T W B 2 : 16 ce ll s t r a v . w a v e bun c h e r ( b = 0 . 95 , 8 p / 9 ) . A cce l e r a t i ng s ec t i on 2 18 M W R e p e titi on r a t e 3 . 125 H z , 10 H z ( m a x . ) − I n a dd iti on a n op ti on a l l o w c u rr e n t m od e i s p l a nn e d t o T w o t r av e lli n g w av e a cce l er a t i n g s t r u c t u re s : R F F r e qu e n c y 2 . 997912 GH z p e rf o r m a t op up i n j ec ti on , k ee p i ng t h e m ea n c u rr e n t i n t h e − S t r u c t u r e s b a s e d on S B T F d e s i gn ( b = 1 , 2 p / 3 , 5 . 2 m F a u lt s < 1 f a u lt/ hou r s t o r a g e r i ng n ea r l y c on s t a n t . l ong ) . T h e t r a n s f er li n e s : − T o t h e b ea m du m p . SPring-8 12/03/02 − T o t h e boo s t e r . Michael B¨ oge 6

  7. “T op-up” Operation at the Swiss Light Source Linac - Measurements E m i tt a n c e @ 100 M e V E n e r g y s p r e a d @ 100 M e V A cc e p t a n c e t e s t s u mm a r y D u r i n g t h e a cce p t an ce t e s t s , t h e l on g t e r m s t ab ilit y o f t h e s y s t e m ha s b ee n d e m on s t r a t e d w it h i n B ea m e n e r g y = 99 . 99 M e V / c t h e s p ec ifi e d b e a m pa r a m e t e r s R m s e n e r g y s p r ea d = 0 . 089 % D i s p e r s i on = 0 . 831 m s i n g l e bu n c h m u l t i − bu n c h energy S i ng l e bun c h w i d t h 1 n s 0.5 µ s spread: M u lt i bun c h w i d t h C h a r g e i n a 2 n C 2.1 − 2.3 n C bun c h / bun c h t r a i n 0.089% E n e r gy 102 M e V 103 M e V P u l s e t o pu l s e < 0.1 % < 0.1 % e n e r gy s t a b i l i t y >0.089 % E n e r gy s p r e a d (r m s ) 0.2 % 0.3 % H o r i z on t a l B e t a : 9 . 871 m N o r m a l i ze d 50 mm m r a d 40 mm m r a d A l f a : − 1 . 758 r a d e m i tt a n ce ( 1 σ ) > 15 mm rad E m itt a n ce : 14 . 7 m c mm m r a d [ 9 % ] S i ng l e bun c h pu r i t y < 0.01 V e r ti ca l R e p e t i t i on r a t e 3.125 H z 3.125 H z B e t a : 10 . 425 m A l f a : − 1 . 995 r a d R F r e f l ec t e d po w e r i n t e r l o c k 1 t r i p / 4hou r s 2 t r i p s / 4hou r s E m itt a n ce : 15 . 8 m c mm m r a d [ 6 % ] emittance x/y: t r i p s ~ 15/16 mm mrad SPring-8 12/03/02 Michael B¨ oge 7

  8. “T op-up” Operation at the Swiss Light Source Linac - Linac-Booster Transferline Linac−Booster Transferline ε x=0.7m Booster Horizontal Scraper +−0.5 % 0 m 34 m 19 m Injection Kicker Linac Bending ALIMA−BY 15/45 deg • +-0.5 % energy filtering - > 60 % of the charge remains for injection into the booster • booster energy acceptance 7 % restricted to 2 % by the acceptance of the vacuum chamber at 100 MeV and 0.5 % by the maximum RF voltage of 0.5 MeV @ 2.4 GeV SPring-8 12/03/02 Michael B¨ oge 8

  9. “T op-up” Operation at the Swiss Light Source Booster - Design – 3 FODO arcs with 48 BD (+SD) 6.4410 ◦ and 45 BF (+SF) 1.1296 ◦ – 3 × 6 Quadrupoles for Tuning, 54 BPMs, 2 × 54 Correctors – ± 15 mm × ± 10 mm Vacuum Chamber – Energy: 100 MeV → 2.7 GeV, Repetition Rate: 3 Hz, Circumference: 270 m – Magnet Power: 205 kW, ǫ x @ 2.4 GeV: 9 nm rad Maximum Energy GeV 2.7 Circumference m 270 Lattice FODO with 3 straights of 8.68 m Harmonic number (15x30=) 450 Storage RF frequency MHz 500 R O Ring T Peak R F voltage MV 0.5 Maximum current mA 12 Injection Maximum rep. Rate Hz 3 Booster Tunes 12.39 / 8.35 Chromaticities −1 / −1 Injection Momentum compaction 0.005 Equilibrium v alues a t 2.4 GeV Emittance nm rad 9 0 5 10 15 20 25m Radiation l oss keV/ turn 233 Linac Energy s pread, rms 0.075 % ε ) Partition numbers (x,y, (1.7, 1, 1.3) ε ) Damping times (x,y, ms (11, 19, 14) SPring-8 12/03/02 Michael B¨ oge 9

Recommend


More recommend