single molecule bio physics single molecule fluorescence
play

Single Molecule Bio-Physics Single Molecule Fluorescence Techniques - PowerPoint PPT Presentation

Single Molecule Bio-Physics Single Molecule Fluorescence Techniques Single Molecule Fluorescence Techniques State of the Art imaging of single (immobilized) fluorescent Cy5 molecules Pictures: Tinnefeld Lab Fluorescence Techniques / GFP Green


  1. Single Molecule Bio-Physics

  2. Single Molecule Fluorescence Techniques

  3. Single Molecule Fluorescence Techniques State of the Art imaging of single (immobilized) fluorescent Cy5 molecules Pictures: Tinnefeld Lab

  4. Fluorescence Techniques / GFP Green Fluorescent Protein (GFP) Discovered in Jelly Fish Nobel Prize 2008

  5. Super-Resolution Microscopy

  6. Super-Resolution Microscopy 4 s movie of actin labeled Cy5 molecules under 100 µM AA – O 2 1 ms integration time Analyzing frame by frame Real-time movie Pictures: Tinnefeld Lab

  7. Super-Resolution Microscopy Actin Fibers stained with ATTO647 Pictures: Sauer Lab J. Vogelsang, T. Cordes, C. Forthmann, C. Steinhauer, and P. Tinnefeld in PNAS 2009 , 106, 8107-8112

  8. Fret / Quenching

  9. Force Spectroscopy

  10. DNA Force Extension by Magnetic Tweezers Bustamante Lab

  11. Applying force to single molecules

  12. Molecular function of muscle Pictures: Gaub Lab

  13. Estimation of entropic forces on a polymer Pictures: Gaub Lab

  14. + ATP (2mM) - ATP Pictures: Gaub Lab

  15. Force Spectroscopy with Optical Tweezers

  16. Optical Tweezers  A. Ashkin et al., Opt. Lett. 11, 288 (1986) Mie-Regime: Particle >> λ : ray-optics Typical Trapping wavelength: 1064 nm Rayleigh-Regime Particle diameter << lambda Consider particle as electric dipole

  17. Investigation of Kinesin

  18. Light Driven Microfluidics

  19. Lab-on-a-Chip Controlled Fluid Flow without channels?

  20. Full Fluid Control 100 µm

  21. Setup Fluorescence Microscope 5 µm IR Laser @ 1450 nm x-y-scanner

  22. What is the driving mechanism?

  23. Moving warm spot Spot

  24. Finite Element Analysis α Expansion Coefficient β Temp. Dep. of Viscosity f Spot Repetition Rate b Spot Width Δ T Spot Temperature F. M. Weinert, J. A. Kraus, T. Franosch and D. Braun, Phys. Rev. Lett. 100, 164501 (2008)

  25. Temperature Imaging

  26. Dependencies v          2 f v T T T

  27. Expansion coefficient and viscosity   v

  28. More Efficient towards Nanofluidics v  2 1 d / F. M. Weinert and D. Braun, J. Appl. Phys. 104, 104701 (2008).

  29. Full Fluid Control

  30. Microfluidics in Gels

  31. Pumping in Ice

  32. Pumping in Ice F. M. Weinert, M. Wühr and D. Braun, Appl. Phys. Lett. 94, 113901 (2009)

  33. Thermophoresis : Thermodiffusion Coefficient c   T  exp( S T ) : Soret Coefficient c 0

  34. Towards a Molecule Trap Paternoster

  35. Towards Accumulation Thermogravitational Separation Column

  36. Concentration Problem at the Origin of Life P. Baaske, F. M. Weinert, S. Duhr, K. H. Lemke, M. J. Russell and D. Braun PNAS 104, 9346 (2007) Problem for Applications: long equilibration times ~ hours/days

  37. Linear Clusius Tube

  38. Temperature Gradient & Bidirectional Flow

  39. Biderectional Flow

  40. Thermophoresis + Bidirectional Flow = Accumulation

  41. Accumulation of 5 base single stranded DNA

  42. Simulation of 50 base ss DNA

  43. Vacuum Cleaner for 40nm beads (real time)

  44. Vacuum Cleaner for ss 50 base DNA

  45. 40nm bead trap Polystyrene Spheres D = 40 nm, S T = 0.04 1/K

  46. Microfluidics in Ice

  47. Parabolic Backflow Asymmetric Pump z Parabolic Backflow z

Recommend


More recommend