single minded agents
play

Single-Minded Agents KIRA GOLDNER, COLUMBIA UNIVERSITY NIKHIL - PowerPoint PPT Presentation

Optimal Mechanism Design for Single-Minded Agents KIRA GOLDNER, COLUMBIA UNIVERSITY NIKHIL DEVANUR RAGHUVANSH SAXENA ARIEL SCHVARTZMAN MATT WEINBERG AMAZON PRINCETON PRINCETON -> RUTGERS PRINCETON C ONTACT : kgoldner@cs.columbia.edu |


  1. Optimal Mechanism Design for Single-Minded Agents KIRA GOLDNER, COLUMBIA UNIVERSITY NIKHIL DEVANUR RAGHUVANSH SAXENA ARIEL SCHVARTZMAN MATT WEINBERG AMAZON PRINCETON PRINCETON -> RUTGERS PRINCETON C ONTACT : kgoldner@cs.columbia.edu | AR X IV : 2002.06329 | P APER : www.kiragoldner.com 1

  2. The Single-Minded Model Results bundle G = service or set of Service options goods desired General case: C Characterization via dual properties. Menu complexity unbounded . (But finite!) A ๐’˜, ๐‘ฏ โˆผ ๐‘ฎ For any ๐‘ต , โˆƒ๐บ over (๐‘ค, ๐ป) s.t. the optimal mechanism has โ‰ฅ ๐‘ต different options. value v = B how much getting DMR: ๐‘ค๐‘” ๐‘ค โˆ’ 1 โˆ’ ๐บ ๐‘ค their bundle is worth = ๐‘”(๐‘ค)๐œ’(๐‘ค) increasing ๐‘ฎ is DMR: Algorithmic characterization, deterministic. FedEx options Out-degree โ‰ค1: 1 day 2 days 3 days FedEx solution [FGKK โ€˜16] applies. 2

  3. Complexity Spectrum: Characterization of the Optimal Mechanism Number of Distinct Options to the Buyer Charact- closed explicit (open, seems erization dual properties none form dual harder) DMR => deterministic Menu Complexity unbounded countably uncountably ๐‘ƒ(2 ! ) 1 โ‰ฅ unbounded (but finite) infinite infinite 2 items 1 item Single-Minded [MV โ€˜07, DDT โ€˜15] [Mye โ€™81] [ DGSSW โ€˜20 ] Budgets: 3 0 2 !"# โˆ’ 1 Multi-Unit Pricing $5, $10, $12 budgets 1,2,3-cap for documents [DW โ€˜17] [DHP โ€˜17, DGSSW โ€˜20 ] FedEx: 2 ! โˆ’ 1 Coordinated Valuations 1, 2, 3-day shipping Wifi, +TV, +Cable [w/ g(v)] [FGKK โ€˜16, SSW โ€˜18] [ DGSSW โ€˜20 ] 3

  4. A Key Idea for Menu Complexity Bound C B A B For any M: > M distinct options. a + ยฏ ๐‘ $ ๐‘ฆ # = 1 ๐‘ % ๐‘ฆ # > 0 r A + x 1 ยฏ r B > ๐‘ $ ๐‘ฆ & ๐‘ $ ๐‘ฆ & > 0 0 x 2 v r B r A x 2 ๐‘ % ๐‘ฆ ' > 0 > ๐‘ % ๐‘ฆ ' x 3 Master Theorem: ๐‘ $ ๐‘ฆ ) > 0 > ๐‘ $ ๐‘ฆ ) For any dual given only by signs ( + / โˆ’ ) and x 4 > ๐‘ % ๐‘ฆ ( โ€ฆ nonnegative variables ( ๐Ÿ and ๐œท โ† ), there โ€ฆ exists a distribution that causes this dual. โ€ฆ โ€ฆ Corollary: The โ€œbad dualโ€ exists. x M โˆ’ 1 x M ๐‘ % ๐‘  % > 0 r A Upper Bound: โˆ’ ๐‘ $ ๐‘  $ > 0 > ๐‘ $ ๐‘  $ r B Our algorithm gives menu complexity length โˆ’ of the sequence (๐‘ฆ 1 , ๐ต), (๐‘ฆ 2 , ๐ถ), (๐‘ฆ 3 , ๐ต), โ€ฆ + โŸน ๐‘ = 1 and โˆ’ โŸน ๐‘ = 0 Complementary An infinite such sequence: 0 ๐ ๐‘ฏ ๐’˜ > 0 โŸน allocation constant Bounded and monotone sequence Slackness โ† ๐œท ๐‘ซ,๐‘ฉ ๐’˜ > 0 โŸน A is preferable to B at v Converges to ๐‘ฆ โˆ— , can set this price. (at least as much area under A than B) 4

Recommend


More recommend