Optimal Mechanism Design for Single-Minded Agents KIRA GOLDNER, COLUMBIA UNIVERSITY NIKHIL DEVANUR RAGHUVANSH SAXENA ARIEL SCHVARTZMAN MATT WEINBERG AMAZON PRINCETON PRINCETON -> RUTGERS PRINCETON C ONTACT : kgoldner@cs.columbia.edu | AR X IV : 2002.06329 | P APER : www.kiragoldner.com 1
The Single-Minded Model Results bundle G = service or set of Service options goods desired General case: C Characterization via dual properties. Menu complexity unbounded . (But finite!) A ๐, ๐ฏ โผ ๐ฎ For any ๐ต , โ๐บ over (๐ค, ๐ป) s.t. the optimal mechanism has โฅ ๐ต different options. value v = B how much getting DMR: ๐ค๐ ๐ค โ 1 โ ๐บ ๐ค their bundle is worth = ๐(๐ค)๐(๐ค) increasing ๐ฎ is DMR: Algorithmic characterization, deterministic. FedEx options Out-degree โค1: 1 day 2 days 3 days FedEx solution [FGKK โ16] applies. 2
Complexity Spectrum: Characterization of the Optimal Mechanism Number of Distinct Options to the Buyer Charact- closed explicit (open, seems erization dual properties none form dual harder) DMR => deterministic Menu Complexity unbounded countably uncountably ๐(2 ! ) 1 โฅ unbounded (but finite) infinite infinite 2 items 1 item Single-Minded [MV โ07, DDT โ15] [Mye โ81] [ DGSSW โ20 ] Budgets: 3 0 2 !"# โ 1 Multi-Unit Pricing $5, $10, $12 budgets 1,2,3-cap for documents [DW โ17] [DHP โ17, DGSSW โ20 ] FedEx: 2 ! โ 1 Coordinated Valuations 1, 2, 3-day shipping Wifi, +TV, +Cable [w/ g(v)] [FGKK โ16, SSW โ18] [ DGSSW โ20 ] 3
A Key Idea for Menu Complexity Bound C B A B For any M: > M distinct options. a + ยฏ ๐ $ ๐ฆ # = 1 ๐ % ๐ฆ # > 0 r A + x 1 ยฏ r B > ๐ $ ๐ฆ & ๐ $ ๐ฆ & > 0 0 x 2 v r B r A x 2 ๐ % ๐ฆ ' > 0 > ๐ % ๐ฆ ' x 3 Master Theorem: ๐ $ ๐ฆ ) > 0 > ๐ $ ๐ฆ ) For any dual given only by signs ( + / โ ) and x 4 > ๐ % ๐ฆ ( โฆ nonnegative variables ( ๐ and ๐ท โ ), there โฆ exists a distribution that causes this dual. โฆ โฆ Corollary: The โbad dualโ exists. x M โ 1 x M ๐ % ๐ % > 0 r A Upper Bound: โ ๐ $ ๐ $ > 0 > ๐ $ ๐ $ r B Our algorithm gives menu complexity length โ of the sequence (๐ฆ 1 , ๐ต), (๐ฆ 2 , ๐ถ), (๐ฆ 3 , ๐ต), โฆ + โน ๐ = 1 and โ โน ๐ = 0 Complementary An infinite such sequence: 0 ๐ ๐ฏ ๐ > 0 โน allocation constant Bounded and monotone sequence Slackness โ ๐ท ๐ซ,๐ฉ ๐ > 0 โน A is preferable to B at v Converges to ๐ฆ โ , can set this price. (at least as much area under A than B) 4
Recommend
More recommend