set cover in sub linear time
play

Set Cover in Sub-linear Time Piotr Indyk Sepideh Mahabadi Ronitt - PowerPoint PPT Presentation

Set Cover in Sub-linear Time Piotr Indyk Sepideh Mahabadi Ronitt Rubinfeld MIT Columbia University MIT/TAU Ali Vakilian Anak Yodpinyanee MIT MIT Set Cover Problem Input: Collection of sets 1 , , , each a subset of


  1. Set Cover in Sub-linear Time Piotr Indyk Sepideh Mahabadi Ronitt Rubinfeld MIT Columbia University MIT/TAU Ali Vakilian Anak Yodpinyanee MIT MIT

  2. Set Cover Problem Input: Collection β„± of sets 𝑇 1 , … , 𝑇 𝑛 , each a subset of 𝒱 = {1, … , π‘œ} 4 2 5 1 3

  3. Set Cover Problem Input: Collection β„± of sets 𝑇 1 , … , 𝑇 𝑛 , each a subset of 𝒱 = {1, … , π‘œ} 4 Output: a subset π’Ÿ of β„± such that: β€’ π’Ÿ covers 𝒱 2 β€’ | π’Ÿ | is minimized 5 1 3

  4. Set Cover Problem Input: Collection β„± of sets 𝑇 1 , … , 𝑇 𝑛 , each a subset of 𝒱 = {1, … , π‘œ} 4 Output: a subset π’Ÿ of β„± such that: β€’ π’Ÿ covers 𝒱 2 β€’ | π’Ÿ | is minimized 5 1 Complexity : β€’ NP-hard 3

  5. Set Cover Problem Input: Collection β„± of sets 𝑇 1 , … , 𝑇 𝑛 , each a subset of 𝒱 = {1, … , π‘œ} 4 Output: a subset π’Ÿ of β„± such that: β€’ π’Ÿ covers 𝒱 2 β€’ | π’Ÿ | is minimized 5 1 Complexity : β€’ NP-hard 3 β€’ Greedy (ln π‘œ) -approximation algorithm

  6. Set Cover Problem Input: Collection β„± of sets 𝑇 1 , … , 𝑇 𝑛 , each a subset of 𝒱 = {1, … , π‘œ} 4 Output: a subset π’Ÿ of β„± such that: β€’ π’Ÿ covers 𝒱 2 β€’ | π’Ÿ | is minimized 5 1 Complexity : β€’ NP-hard 3 β€’ Greedy (ln π‘œ) -approximation algorithm β€’ Can’t do better unless P=NP [LY91][RS97][Fei98][AMS06][DS14]

  7. Set Cover Problem Input: Collection β„± of sets 𝑇 1 , … , 𝑇 𝑛 , each a subset of 𝒱 = {1, … , π‘œ} 4 Output: a subset π’Ÿ of β„± such that: β€’ π’Ÿ covers 𝒱 2 β€’ | π’Ÿ | is minimized 5 1 Complexity : β€’ NP-hard 3 β€’ Greedy (ln π‘œ) -approximation algorithm β€’ Can’t do better unless P=NP [LY91][RS97][Fei98][AMS06][DS14] β€œIs it possible to solve minimum set cover in sub-linear time ?”

  8. Sub-linear Time Set Cover Data Access Model ?

  9. Sub-linear Time Set Cover Data Access Model [NO’08,YYI’12] EltOf (𝑻, 𝒋) : 𝑗 th element in 𝑻 SetOf (𝒇, π’Œ) : π‘˜ th set containing 𝒇

  10. Sub-linear Time Set Cover Data Access Model [NO’08,YYI’12] EltOf (𝑻, 𝒋) : 𝑗 th element in 𝑻 β€’ No assumption on the order SetOf (𝒇, π’Œ) : π‘˜ th set containing 𝒇 β€’ Incidence list in (sub-linear) algorithms for graphs

  11. Sub-linear Time Set Cover Data Access Model [NO’08,YYI’12] EltOf (𝑻, 𝒋) : 𝑗 th element in 𝑻 β€’ No assumption on the order SetOf (𝒇, π’Œ) : π‘˜ th set containing 𝒇 β€’ Incidence list in (sub-linear) algorithms for graphs β€’ Sublinear in 𝒏𝒐

  12. Sub-linear Time Set Cover Data Access Model [NO’08,YYI’12] EltOf (𝑻, 𝒋) : 𝑗 th element in 𝑻 β€’ No assumption on the order SetOf (𝒇, π’Œ) : π‘˜ th set containing 𝒇 β€’ Incidence list in (sub-linear) algorithms for graphs β€’ Sublinear in 𝒏𝒐 Prior Results

  13. Sub-linear Time Set Cover Data Access Model [NO’08,YYI’12] EltOf (𝑻, 𝒋) : 𝑗 th element in 𝑻 β€’ No assumption on the order SetOf (𝒇, π’Œ) : π‘˜ th set containing 𝒇 β€’ Incidence list in (sub-linear) algorithms for graphs β€’ Sublinear in 𝒏𝒐 Prior Results  [Nguyen, Onak ’08][Yoshida, Yamamoto, Ito’12]  Constant queries, if degree is constant

  14. Sub-linear Time Set Cover Data Access Model [NO’08,YYI’12] EltOf (𝑻, 𝒋) : 𝑗 th element in 𝑻 β€’ No assumption on the order SetOf (𝒇, π’Œ) : π‘˜ th set containing 𝒇 β€’ Incidence list in (sub-linear) algorithms for graphs β€’ Sublinear in 𝒏𝒐 Prior Results  [Nguyen, Onak ’08][Yoshida, Yamamoto, Ito’12]  Constant queries, if degree is constant  [Koufogiannakis , Young’14][ Grigoriadis , Kachiyan’95]:  Find (1 + πœ—) -approximate fractional solution , then perform randomized rounding to achieve 𝑃(log π‘œ) -approximation

  15. Sub-linear Time Set Cover Data Access Model [NO’08,YYI’12] EltOf (𝑻, 𝒋) : 𝑗 th element in 𝑻 β€’ No assumption on the order SetOf (𝒇, π’Œ) : π‘˜ th set containing 𝒇 β€’ Incidence list in (sub-linear) algorithms for graphs β€’ Sublinear in 𝒏𝒐 Prior Results  [Nguyen, Onak’08][Yoshida, Yamamoto, Ito’12]  Constant queries, if degree is constant  [Koufogiannakis , Young’14][ Grigoriadis , Kachiyan’95]:  Find (1 + πœ—) -approximate fractional solution , then perform randomized rounding to achieve 𝑃(log π‘œ) -approximation  𝑃(𝑛𝑙 2 + π‘œπ‘™ 2 ) (can be improved to 𝑃(𝑛 + π‘œπ‘™) ) 𝒐 = number of elements 𝒏 = number of sets 𝒍 = size of the optimal solution

  16. Results Problem Approximation Constraints Query Complexity 1 π‘œ π›½βˆ’1 + π‘œπ‘™ π›½πœ + 1 𝛽 β‰₯ 2 𝑃 𝑛 𝑙 𝑃 π‘›π‘œ 𝜍 + 1 βˆ’ 𝑙 Set Cover 1 1 π‘œ 4𝛽+1 π‘œ 2𝛽 𝛽 𝑙 ≀ Ξ© 𝑛 log 𝑛 𝑙 Ξ© π‘›π‘œ 𝛽 ≀ 1.01 𝛽 𝑙 = 𝑃(π‘œ/ log 𝑛) 𝑙 Cover Verification βˆ’ 𝑙 ≀ π‘œ/2 Ξ©(π‘œπ‘™) 𝝇 = approximation factor for offline Set Cover 𝒐 = number of elements 𝒏 = number of sets 𝒍 = Size of the optimal Solution

  17. Results Problem Approximation Constraints Query Complexity 1 π‘œ π›½βˆ’1 + π‘œπ‘™ π›½πœ + 1 𝛽 β‰₯ 2 𝑃 𝑛 𝑙 𝑃 π‘›π‘œ 𝜍 + 1 βˆ’ 𝑙 Set Cover 1 1 π‘œ 4𝛽+1 π‘œ 2𝛽 𝛽 𝑙 ≀ Ξ© 𝑛 log 𝑛 𝑙 Ξ© π‘›π‘œ 𝛽 ≀ 1.01 𝛽 𝑙 = 𝑃(π‘œ/ log 𝑛) 𝑙 Cover Verification βˆ’ 𝑙 ≀ π‘œ/2 Ξ©(π‘œπ‘™) 𝝇 = approximation factor for offline Set Cover 𝒐 = number of elements 𝒏 = number of sets 𝒍 = Size of the optimal Solution

  18. Results Problem Approximation Constraints Query Complexity 1 π‘œ π›½βˆ’1 + π‘œπ‘™ π›½πœ + 1 𝛽 β‰₯ 2 𝑃 𝑛 𝑙 𝑃 π‘›π‘œ 𝜍 + 1 βˆ’ 𝑙 Set Cover 1 1 π‘œ 4𝛽+1 π‘œ 2𝛽 𝛽 𝑙 ≀ Ξ© 𝑛 log 𝑛 𝑙 Ξ© π‘›π‘œ 𝛽 ≀ 1.01 𝛽 𝑙 = 𝑃(π‘œ/ log 𝑛) 𝑙 Cover Verification βˆ’ 𝑙 ≀ π‘œ/2 Ξ©(π‘œπ‘™) Cover Verification : given a set system, verify whether a given sub-collection of sets covers the universe. 𝝇 = approximation factor for offline Set Cover 𝒐 = number of elements 𝒏 = number of sets 𝒍 = Size of the optimal Solution

  19. Results Problem Approximation Constraints Query Complexity 1 π‘œ π›½βˆ’1 + π‘œπ‘™ π›½πœ + 1 𝛽 β‰₯ 2 𝑃 𝑛 𝑙 𝑃 π‘›π‘œ 𝜍 + 1 βˆ’ 𝑙 Set Cover 1 1 π‘œ 4𝛽+1 π‘œ 2𝛽 𝛽 𝑙 ≀ Ξ© 𝑛 log 𝑛 𝑙 Ξ© π‘›π‘œ 𝛽 ≀ 1.01 𝛽 𝑙 = 𝑃(π‘œ/ log 𝑛) 𝑙 Cover Verification βˆ’ 𝑙 ≀ π‘œ/2 Ξ©(π‘œπ‘™) Cover Verification : given a set system, verify whether a given sub-collection of sets covers the universe. 𝝇 = approximation factor for offline Set Cover 𝒐 = number of elements 𝒏 = number of sets 𝒍 = Size of the optimal Solution

  20. Results Problem Approximation Constraints Query Complexity 1 π‘œ π›½βˆ’1 + π‘œπ‘™ π›½πœ + 1 𝛽 β‰₯ 2 𝑃 𝑛 𝑙 𝑃 π‘›π‘œ 𝜍 + 1 βˆ’ 𝑙 Set Cover 1 1 π‘œ 4𝛽+1 π‘œ 2𝛽 𝛽 𝑙 ≀ Ξ© 𝑛 log 𝑛 𝑙 Ξ© π‘›π‘œ 𝛽 ≀ 1.01 𝛽 𝑙 = 𝑃(π‘œ/ log 𝑛) 𝑙 Cover Verification βˆ’ 𝑙 ≀ π‘œ/2 Ξ©(π‘œπ‘™) Cover Verification : given a set system, verify whether a given sub-collection of sets covers the universe. 𝝇 = approximation factor for offline Set Cover 𝒐 = number of elements 𝒏 = number of sets 𝒍 = Size of the optimal Solution

  21. Results Problem Approximation Constraints Query Complexity 1 π‘œ π›½βˆ’1 + π‘œπ‘™ π›½πœ + 1 𝛽 β‰₯ 2 𝑃 𝑛 𝑙 𝑃 π‘›π‘œ 𝜍 + 1 βˆ’ 𝑙 Set Cover 1 1 π‘œ 4𝛽+1 π‘œ 2𝛽 𝛽 𝑙 ≀ Ξ© 𝑛 log 𝑛 𝑙 Ξ© π‘›π‘œ 𝛽 ≀ 1.01 𝛽 𝑙 = 𝑃(π‘œ/ log 𝑛) 𝑙 Cover Verification βˆ’ 𝑙 ≀ π‘œ/2 Ξ©(π‘œπ‘™) Cover Verification : given a set system, verify whether a given sub-collection of sets covers the universe. 𝝇 = approximation factor for offline Set Cover 𝒐 = number of elements 𝒏 = number of sets 𝒍 = Size of the optimal Solution

  22. Results Problem Approximation Constraints Query Complexity 1 π‘œ π›½βˆ’1 + π‘œπ‘™ π›½πœ + 1 𝛽 β‰₯ 2 𝑃 𝑛 𝑙 𝑃 π‘›π‘œ 𝜍 + 1 βˆ’ 𝑙 Set Cover 1 1 π‘œ 4𝛽+1 π‘œ 2𝛽 𝛽 𝑙 ≀ Ξ© 𝑛 log 𝑛 𝑙 Ξ© π‘›π‘œ 𝛽 ≀ 1.01 𝛽 𝑙 = 𝑃(π‘œ/ log 𝑛) 𝑙 Cover Verification βˆ’ 𝑙 ≀ π‘œ/2 Ξ©(π‘œπ‘™) Cover Verification : given a set system, verify whether a given sub-collection of sets covers the universe. 𝝇 = approximation factor for offline Set Cover 𝒐 = number of elements 𝒏 = number of sets 𝒍 = Size of the optimal Solution

  23. Part one: upper bound Theorem: There exists an algorithm that with high probability 𝑃(𝒏𝒐 𝟐/𝜷 + 𝒐𝒍) finds an O(πœπ›½) -approximate cover which uses number of queries.

  24. Part one: upper bound Theorem: There exists an algorithm that with high probability 𝑃(𝒏𝒐 𝟐/𝜷 + 𝒐𝒍) finds an O(πœπ›½) -approximate cover which uses number of queries. 1. Two simple components used for coverage problems in massive data models. β€’ Set Sampling β€’ Element Sampling 2. The algorithm overview

  25. Component I: set sampling Set Sampling: After picking β„“ sets uniformly at random, all m log π‘œ elements with degree at least are covered w.h.p. β„“ β€’ We only need to worry about low degree elements.

Recommend


More recommend