graphics 2014
play

Graphics 2014 Linear Algebra II Linear Maps & Matrices Linear - PowerPoint PPT Presentation

Graphics 2014 Linear Algebra II Linear Maps & Matrices Linear Maps & Matrices CORE core topics important Linear Combinations x 1 2x 2 + x 1 = x 2 =1 Linear Combinations Algebra Linear Combinations


  1. Invertible Matrices Rank ๏‚ง Number of linearly independent columns ๏‚ง Dimension of span{๐๐ฉ๐ฆ๐ฏ๐ง๐จ_๐ฐ๐Ÿ๐๐ฎ๐ฉ๐ฌ๐ญ} Theorem ๏‚ง Rank = number of linearly independent rows Full rank (๐‘Š) ๏‚ง rank(๐) = dim ๏‚ง Then: ๐ is invertible

  2. Linear Systems of Equations First consider simpler case ๏‚ง Say, we know that ๐ โ‹… ๐ฒ = ๐ณ ๏‚ง Square matrix ๐ โˆˆ โ„ ๐‘’ร—๐‘’ ๏‚ง Vectors ๐ฒ, ๐ณ โˆˆ โ„ ๐‘’ร—๐‘’ Knowns & Unknowns ๏‚ง We are given ๐ , ๐ณ ๏‚ง We should compute ๐ฒ ๏‚ง Linear system of equations

  3. Linear Systems of Equations Linear System of Equations ๐ โ‹… ๐ฒ = ๐ณ โ‡” ๐‘› 1,1 โ‹ฏ ๐‘› 1,๐‘’ ๐‘ฆ 1 ๐‘ง 1 โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ โ‹… = ๐‘› ๐‘’,1 โ‹ฏ ๐‘› ๐‘’,๐‘’ ๐‘ฆ ๐‘’ ๐‘ง ๐‘’ โ‡” ๐‘› 1,1 ๐‘ฆ 1 + โ‹ฏ + ๐‘› 1,๐‘’ ๐‘ฆ ๐‘’ = ๐‘ง 1 ๐‘› 2,1 ๐‘ฆ 1 + โ‹ฏ + ๐‘› 2,๐‘’ ๐‘ฆ ๐‘’ = ๐‘ง 2 and โ‹ฎ ๐‘› ๐‘’,1 ๐‘ฆ 1 + โ‹ฏ + ๐‘› ๐‘’,๐‘’ ๐‘ฆ ๐‘’ = ๐‘ง ๐‘’ and

  4. Gaussian Elimination Linear System โˆง ๐‘› 1,1 ๐‘ฆ 1 + โ‹ฏ + ๐‘› 1,๐‘’ ๐‘ฆ ๐‘’ = ๐‘ง 1 โˆง ๐‘› 2,1 ๐‘ฆ 1 + โ‹ฏ + ๐‘› 2,๐‘’ ๐‘ฆ ๐‘’ = ๐‘ง 2 โ‹ฎ โˆง ๐‘› ๐‘’,1 ๐‘ฆ 1 + โ‹ฏ + ๐‘› ๐‘’,๐‘’ ๐‘ฆ ๐‘’ = ๐‘ง ๐‘’ Row Operations ๏‚ง Swap rows ๐‘  ๐‘— , ๐‘  ๐‘˜ ๏‚ง Scale row ๐‘  ๐‘— by factor ๐œ‡ โ‰  0 ๏‚ง Add multiple of row ๐‘  ๐‘— to row ๐‘  ๐‘˜ , ๐‘— โ‰  ๐‘˜ (i.e., ๐‘  ๐‘˜ ) ๐‘— += ๐œ‡๐‘ 

  5. Convert to Upper Triangle Matrix ๐ณ ๐ ๐ฒ 0 = = 0 0 0 0 0 0 = 0 0 0 = 0 0 0 0 (use row-operations)

  6. Convert to Diagonal Matrix ๐ณ ๐ ๐ฒ 0 = = 0 0 0 0 0 โ€ฒ 0 0 0 ๐‘› 1,1 ๐‘ฆ 1 โ€ฒ ๐‘ง 1 โ€ฒ 0 0 ๐‘ฆ 2 โ€ฒ 0 0 ๐‘› 2,2 ๐‘ง 2 = = โ€ฒ 0 ๐‘ฆ 3 โ€ฒ 0 0 0 ๐‘ง 3 ๐‘› 3,3 โ€ฒ ๐‘ฆ 4 โ€ฒ 0 0 0 0 ๐‘› 4,4 ๐‘ง 4 โ€ฒ 0 0 0 1 ๐‘ฆ 1 โ€ฒ /m 1,1 ๐‘ง 1 โ€ฒ 0 0 0 0 ๐‘ฆ 2 โ€ฒ /m 2,2 1 ๐‘ง 2 = = โ€ฒ 0 0 0 0 0 ๐‘ฆ 3 โ€ฒ /m 3,3 1 ๐‘ง 3 โ€ฒ 0 0 0 0 0 ๐‘ฆ 4 โ€ฒ /m 4,4 1 ๐‘ง 4 (use row-operations)

  7. Gauss-Algorithm Gauss-Algorithm ๏‚ง Substract rows to cancel front-coefficient ๏‚ง Create upper triangle matrix first ๏‚ง Then create diagonal matrix ๏‚ง If current row starts with 0 ๏‚ง Swap with another row ๏‚ง If all rows start with 0: matrix not invertible ๏‚ง Diagonal form: Solution can be read-off ๏‚ง Data structure ๏‚ง Modify matrix M , โ€œright -hand- sideโ€ y . ๏‚ง x remains unknown (no change)

  8. Matrix Inverse Solve for 1 0 0 0 1 0 ๐ โ‹… ๐ฒ 1 = , ๐ โ‹… ๐ฒ 2 = , โ€ฆ , ๐ โ‹… ๐ฒ ๐‘’ = โ‹ฎ โ‹ฎ โ‹ฎ 0 0 1 ๏‚ง The resulting ๐ฒ 1 , ๐ฒ 2 , โ€ฆ , ๐ฒ ๐‘’ are the columns of ๐ โˆ’1 : | | ๐ โˆ’1 = ๐ฒ 1 โ‹ฏ ๐ฒ ๐‘’ | |

  9. Matrix Inverse Algorithm ๏‚ง Simultaneous Gaussian elimination ๏‚ง Start as follows: ๐ ๐ฒ ๐‰ 0 0 0 1 0 0 0 1 = 0 0 0 1 0 0 0 1 ๏‚ง Handle all right-hand sides simultaneously ๏‚ง After Gauss-algorithm, the right-hand matrix is the inverse

  10. Alternative: Kramerโ€™s Rule Small Matrices ๏‚ง Direct formula based on determinants ๏‚ง โ€œKramerโ€™s ruleโ€ ๏‚ง (more later) ๏‚ง Naive implementation has run-time ๐’ซ(๐‘’!) โ€“ Gauss: ๐’ซ(๐‘’ 3 ) ๏‚ง Not advised for ๐‘’ > 3

  11. More Vector Operations: Scalar Products BASIC basic topics study completely

  12. Additional Vector Operations ๐ฐ 2 ๐ฐ 1 ๐ฐ 1 = ๐Ÿ‘. ๐Ÿ’cm ๐ฐ 2 = ๐Ÿ“. ๐Ÿ‘cm Length of Vectors โ€œlengthโ€ or โ€œnormโ€ โ€–๐ฐโ€– yields real number โ‰ฅ 0

  13. Additional Vector Operations ๐ฐ 2 ๐ฐ 1 ๐›ฝ ๐›ฝ = โˆ  ๐ฐ 1 , ๐ฐ 2 = ๐Ÿ’๐Ÿ’ยฐ Angle between Vectors angle โˆ  ๐ฐ 1 , ๐ฐ 2 yields real number 0, โ€ฆ , 2๐œŒ = [0, โ€ฆ , 360ยฐ)

  14. Additional Vector Operations ๐ฐ 2 ๐ฐ 1 90ยฐ right angles Angle between Vectors

  15. Additional Vector Operations ๐ฐ ๐ฑ 90ยฐ ๐ฐ prj on ๐ฑ Projection Projection: determine length of ๐ฐ along direction of ๐ฑ

  16. Additional Vector Operations ๐ฐ ๐ฑ 90ยฐ Scalar Product *) ๐ฐ โ‹… ๐ฑ = ๐ฐ โ‹… ๐ฑ โ‹… cos โˆ (๐ฐ, ๐ฑ) also: ๐ฐ, ๐ฑ *) also known as inner product or dot-product

  17. Signature in in operato tor โˆ— out 42.0 Scalar Product (dot product, inner-product)

  18. Additional Vector Operations ๐ฐ ๐ฑ 90ยฐ Scalar Product *) ๐ฐ โ‹… ๐ฑ = ๐ฐ โ‹… ๐ฑ โ‹… cos โˆ (๐ฐ, ๐ฑ) also: ๐ฐ, ๐ฑ *) also known as inner product or dot-product

  19. Additional Vector Operations ๐ฐ ๐ฑ 90ยฐ Scalar Product *) ๐ฐ โ‹… ๐ฑ = ๐ฐ โ‹… ๐ฑ โ‹… cos โˆ (๐ฐ, ๐ฑ) Comprises: length, projection, angles *) also known as inner product or dot-product

  20. Additional Vector Operations Length: ๐ฐ = ๐ฐ โ‹… ๐ฐ Angle: โˆ  ๐ฐ, ๐ฑ = arccos ๐ฐ โ‹… ๐ฑ Projection : โ€ž ๐ฐ prj on ๐ฑ โ€ = ๐ฐโ‹…๐ฑ ๐ฑ ๐ฐ โ‹… ๐ฑ = ๐ฐ โ‹… ๐ฑ โ‹… cos โˆ (๐ฐ, ๐ฑ) Comprises: length, projection, angles

  21. Algebraic Representation (Implementation) BASIC basic topics study completely

  22. Scalar Product ๐ฐ ๐ฑ 90ยฐ Scalar Product *) ๐ฐ โ‹… ๐ฑ = ๐‘ค 1 ๐‘ค 2 โ‹… ๐‘ฅ 1 โ‰” ๐‘ค 1 โ‹… ๐‘ฅ 1 + ๐‘ค 2 โ‹… ๐‘ฅ 2 ๐‘ฅ 2 Theorem: ๐ฐ โ‹… ๐ฑ = ๐ฐ โ‹… ๐ฑ โ‹… cos โˆ (๐ฐ, ๐ฑ)

  23. Scalar Product ๐ฑ ๐ฐ = 3 ๐ฐ 2 ๐ฑ = 1 2 Scalar product ๐ฐ โ‹… ๐ฑ = ๐‘ค 1 ๐‘ค 2 โ‹… ๐‘ฅ 1 ๐‘ฅ 2

  24. Scalar Product 2D Scalar product ๐ฐ โ‹… ๐ฑ = ๐‘ค 1 ๐‘ค 2 โ‹… ๐‘ฅ 1 โ‰” ๐‘ค 1 โ‹… ๐‘ฅ 1 + ๐‘ค 2 โ‹… ๐‘ฅ 2 ๐‘ฅ 2 d -dim scalar product ๐‘ค 1 ๐‘ฅ 1 โ‰” ๐‘ค 1 โ‹… ๐‘ฅ 1 + โ‹ฏ + ๐‘ค ๐‘’ โ‹… ๐‘ฅ ๐‘’ ๐ฐ โ‹… ๐ฑ = โ‹… โ‹ฎ โ‹ฎ ๐‘ค ๐‘’ ๐‘ฅ ๐‘’

  25. Algebraic Properties Settings Properties ๐œ‡ โˆˆ โ„ ๏‚ง Symmetry (commutativity) ๐ฏ, ๐ฐ, ๐ฑ โˆˆ โ„ ๐‘’ ๐ฏ, ๐ฐ = ๐ฐ, ๐ฏ ๏‚ง Bilinearity ๐œ‡๐ฐ, ๐ฑ = ๐œ‡ ๐ฐ, ๐ฑ = ๐ฐ, ๐œ‡๐ฑ ๐ฏ + ๐ฐ, ๐ฑ = ๐ฏ, ๐ฑ + ๐ฐ, ๐ฑ (symmetry: same for second argument) ๏‚ง Positive definite ๐ฏ, ๐ฏ = ๐Ÿ โ‡’ ๐ฏ = ๐Ÿ ๐ฏ, ๐ฏ โ‰ฅ 0, These three: axiomatic definition

  26. Attention! Do not mix ๏‚ง Scalar-vector product ๏‚ง Inner (scalar) product In general ๐ฒ, ๐ณ โ‹… ๐ด โ‰  ๐ฒ โ‹… ๐ณ, ๐ด Beware of notation: ๐ฒ โ‹… ๐ณ โ‹… ๐ด โ‰  ๐ฒ โ‹… ๐ณ โ‹… ๐ด (no violation of associativity: different operations; details later)

  27. Applications of the Scalar Product CORE core topics important

  28. Applications Obvious applications ๏‚ง Measuring length ๏‚ง Measuring angles ๏‚ง Projections More complex applications ๏‚ง Creating orthogonal (90ยฐ) pairs of vectors ๏‚ง Creating orthogonal bases

  29. Projection ๐ฐ ๐ฑ 90ยฐ Scalar Product *) ๐ฐ โ‹… ๐ฑ = ๐ฐ โ‹… ๐ฑ โ‹… cos โˆ (๐ฐ, ๐ฑ)

  30. Projection ๐ฑ ๐ฑ ๐ฐ ๐ฑ n = = ๐ฑ ๐ฑ, ๐ฑ ๐ฑ 90ยฐ ๐ฑ n prj.-vector projection Scalar Product *) ๐ฑ Prj.-Vector: ๐ฐ, Projection: ๐ฐ โ‹… ๐ฑโ‹…๐ฑ ๐ฑ ๐ฑ ๐ฑ,๐ฑ โ‹… ๐ฑ,๐ฑ ๐ฑ = ๐ฐ, ๐ฑ โ‹… ๐ฑ,๐ฑ

  31. Orthogonalization ๐ฑ ๐ฑ ๐ฑ n = = ๐ฐ ๐ฑ ๐ฑ, ๐ฑ ๐ฐ โ€ฒ ๐ฑ 90ยฐ prj.-vector projection Scalar Product *) Orthogonalize ๐ฐ wrt. ๐ฑ : ๐ฑ ๐ฐ โ€ฒ = ๐ฐ โˆ’ ๐ฐ, ๐ฑ โ‹… ๐ฑ, ๐ฑ

  32. Orthogonalization ๐ฐ ๐ฐ โ€ฒ ๐ฑ 90ยฐ Scalar Product *) Orthogonalize ๐ฐ wrt. ๐ฑ : ๐ฑ ๐ฐ โ€ฒ = ๐ฐ โˆ’ ๐ฐ, ๐ฑ โ‹… ๐ฑ, ๐ฑ

  33. Gram-Schmidt Orthogonalization Orthogonal basis ๏‚ง All vectors in 90ยฐ angle to each other ๐œ ๐‘— , ๐œ ๐‘˜ = 0 for ๐‘— โ‰  ๐‘˜ Create orthogonal bases ๏‚ง Start with arbitrary one ๏‚ง Orthogonalize ๐œ 2 by ๐œ 1 ๏‚ง Orthogonalize ๐œ 3 by ๐œ 1 , then by ๐œ 2 ๏‚ง Orthogonalize ๐œ 4 by ๐œ 1 , then by ๐œ 2 , then by ๐œ 3 ๏‚ง ...

  34. Orthonormal Basis Orthonormal bases ๏‚ง Orthogonal and all vectors have unit length Computation ๏‚ง Orthogonalize first ๏‚ง Then scale each vector ๐œ ๐‘— by 1/ ๐œ ๐‘— .

  35. Matrices Orthogonal Matrices ๏‚ง A matrix with orthonormal columns is called orthogonal matrix ๏‚ง Yes, this terminology is not quite logical... Orthogonal Matrices are always ๏‚ง Rotation matrices ๏‚ง Or reflection matrices ๏‚ง Or products of the two

  36. Further Operations CORE core topics important

  37. Cross Product Cross-Product: Exists Only For 3D Vectors! ๏‚ง ๐ฒ, ๐ณ โˆˆ โ„ 3 ๐‘ฆ 1 ๐‘ง 1 ๐‘ฆ 2 ๐‘ง 3 โˆ’ ๐‘ฆ 3 ๐‘ง 2 ๐‘ง 2 ๐‘ฆ 2 ๐‘ฆ 3 ๐‘ง 1 โˆ’ ๐‘ฆ 1 ๐‘ง 3 ๏‚ง ๐ฒ ร— ๐ณ = ร— โ‰” ๐‘ฆ 3 ๐‘ง 3 ๐‘ฆ 1 ๐‘ง 2 โˆ’ ๐‘ฆ 2 ๐‘ง 1 Geometrically: Theorem x ๏‚ด y ๏‚ง ๐ฒ ร— ๐ณ orthogonal to ๐ฒ, ๐ณ y ๏‚ง Right-handed system ๐ฒ, ๐ณ, ๐ฒ ร— ๐ณ โ€– x ๏‚ด y โ€– = ๐ฒ โ‹… ๐ณ โ‹… sinโˆ  ๐ฒ, ๐ณ ๐ฒ ร— ๐ณ x ๏‚ง

  38. Cross-Product Properties Bilinearity ๏‚ง Distributive: ๐ฏ ร— ๐ฐ + ๐ฑ = ๐ฏ ร— ๐ฐ + ๐ฏ ร— ๐ฑ ๏‚ง Scalar-Mult.: ๐œ‡๐ฏ ร— ๐ฐ = ๐ฏ ร— ๐œ‡๐ฐ = ๐œ‡ ๐ฏ ร— ๐ฐ But beware of ๏‚ง Anti -Commutative: ๐ฏ ร— ๐ฐ = โˆ’๐ฐ ร— ๐ฏ ๏‚ง Not associative; we can have ๐ฏ ร— ๐ฐ ร— ๐ฑ โ‰  ๐ฏ ร— ๐ฐ ร— ๐ฑ

  39. Determinants det ๐ | | | v 1 ๐ฐ 1 ๐ฐ 2 ๐ฐ 3 ๐ = | | | v 3 v 2 Determinants ๏‚ง Square matrix M ๏‚ง det( M ) = |M| = volume of parallelepiped of column vectors

  40. Determinants det ๐ > 0 | | | v 1 ๐ฐ 1 ๐ฐ 2 ๐ฐ 3 ๐ = | | | v 3 v 2 det ๐ โ€ฒ < 0 | | | ๐ โ€ฒ = v 2 ๐ฐ 2 ๐ฐ 1 ๐ฐ 3 | | | v 3 negative determinant Sign: โ†’ map v 1 contains ๏‚ง Positive for right handed coordinates reflection ๏‚ง Negative for left-handed coordinates

  41. Properties A few properties: sign flips! โ†’ reflections ๏‚ง det( A ) det( B ) = det( A โ‹… B ) cancel each ๏‚ง det( ๐œ‡ A ) = ๐œ‡ d det( A ) ( d ๏‚ด d matrix A ) other (parity) ๏‚ง det( A -1 ) = det( A ) -1 ๏‚ง det( A T ) = det( A ) ๏‚ง det ๐ โ‰  0 โ‡” ๐ invertible ๏‚ง Efficient computation using Gaussian elimination

  42. Computing Determinants + โˆ’ + ๐‘ ๐‘ ๐‘‘ ๐‘— โˆ’ ๐‘ ๐‘’ ๐‘” ๐‘— + ๐‘‘ ๐‘’ ๐‘“ = +๐‘ ๐‘“ ๐‘” โ„Ž ๐‘’ ๐‘“ ๐‘” ๐‘• ๐‘• โ„Ž ๐‘• โ„Ž ๐‘— signs +๐‘ โˆ’๐‘ +๐‘‘ Recursive Formula ๐‘’ ๐‘“ ๐‘” ๐‘• โ„Ž ๐‘— ๏‚ง Sum over first row subdeterminants ๏‚ง Multiply element there ๐‘ ๐‘ ๐‘‘ with subdeterminant ๐‘’ ๐‘” ๐‘’ ๐‘“ ๐‘” ๐‘— ๐‘• ๐‘• โ„Ž ๐‘— ๏‚ง Subdeterminant : Leave out row and column | a |= a of selected element ๏‚ง Recursion ends with | a |= a Beware of ๐’ซ ๐‘’๐‘—๐‘›! ๏‚ง Alternate signs +/โˆ’/+/โˆ’/ โ€ฆ complexity

  43. Computing Determinants Result in 3D Case ๐‘ ๐‘ ๐‘‘ = ๐‘๐‘“๐‘— + ๐‘๐‘”๐‘• + ๐‘‘๐‘’โ„Ž โˆ’ ๐‘‘๐‘“๐‘• โˆ’ ๐‘๐‘’๐‘— โˆ’ ๐‘๐‘”โ„Ž ๐‘’ ๐‘“ ๐‘” det ๐‘• โ„Ž ๐‘—

  44. Solving Linear Systems Consider ๐ โ‹… ๐ฒ = ๐œ ๏‚ง Invertible matrix ๐ โˆˆ โ„ ๐‘’ร—๐‘’ ๏‚ง Known vector ๐œ โˆˆ โ„ ๐‘’ ๏‚ง Unknown vector ๐ฒ โˆˆ โ„ ๐‘’ Solution with Determinants ( Cramarโ€™s rule): | | | ๐‘ฆ ๐‘— = det ๐ ๐‘— det ๐ ๐ฐ 1 โ‹ฏ ๐œ โ‹ฏ ๐ฐ 3 ๐ ๐‘— = | | | column ๐‘—

  45. Addendum Matrix Algebra ADV advanced topics main ideas

  46. Matrix Algebra Define three operations ๏‚ง Matrix addition ๐‘ 1,1 โ‹ฏ ๐‘ 1,๐‘œ ๐‘ 1,1 โ‹ฏ ๐‘ 1,๐‘œ ๐‘ 1,1 + ๐‘ 1,1 โ‹ฏ ๐‘ 1,๐‘œ + ๐‘ 1,๐‘œ โ‹ฎ โ‹ฑ โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎ + = ๐‘ ๐‘›,1 โ‹ฏ ๐‘ ๐‘›,๐‘œ ๐‘ ๐‘›,1 โ‹ฏ ๐‘ ๐‘›,๐‘œ ๐‘ ๐‘›,1 + ๐‘ ๐‘›,1 โ‹ฏ ๐‘ ๐‘›,๐‘œ + ๐‘ ๐‘›,๐‘œ ๏‚ง Scalar matrix multiplication ๐‘ 1,1 โ‹ฏ ๐‘ 1,๐‘œ ๐œ‡ โ‹… ๐‘ 1,1 โ‹ฏ ๐œ‡ โ‹… ๐‘ 1,๐‘œ โ‹ฎ โ‹ฑ โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎ ๐œ‡ โ‹… = ๐‘ ๐‘›,1 โ‹ฏ ๐‘ ๐‘›,๐‘œ ๐œ‡ โ‹… ๐‘ ๐‘›,1 โ‹ฏ ๐œ‡ โ‹… ๐‘ ๐‘›,๐‘œ ๏‚ง Matrix-matrix multiplication โ‹ฑ โ‹ฐ ๐‘ 1,1 โ‹ฏ ๐‘ 1,๐‘œ ๐‘ 1,1 โ‹ฏ ๐‘ 1,๐‘› ๐‘™ โ‹ฎ โ‹ฑ โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎ โ‹… = ๐‘ ๐‘Ÿ,๐‘˜ โ‹… ๐‘ ๐‘—,๐‘Ÿ ๐‘ ๐‘›,1 โ‹ฏ ๐‘ ๐‘›,๐‘œ ๐‘ ๐‘™,1 โ‹ฏ ๐‘ ๐‘™,๐‘› ๐‘Ÿ=1 โ‹ฐ โ‹ฑ

  47. Transposition T = Matrix Transposition ๏‚ง Swap rows and columns ๏‚ง Formally: T โ‹ฑ โ‹… โ‹ฐ โ‹… โ‹… โ‹… โ‹ฑ โ‹… โ‹… โ‹… โ‹ฐ ๐‘ ๐‘—,๐‘˜ ๐‘ ๐‘˜,๐‘— โ‹… โ‹… = โ‹… โ‹… โ‹… โ‹… โ‹… โ‹… โ‹… โ‹ฐ โ‹… โ‹… โ‹… โ‹ฑ โ‹ฐ โ‹… โ‹ฑ

  48. Vectors Vectors ๏‚ง Column matrices ๐ฒ โˆˆ โ„ ๐‘’ ๏‚ง Matrix-Vector product consistent Co-Vectors ๐ณ T โˆˆ โ„ ๐‘’ ๏‚ง โ€œprojectorsโ€, โ€œdual vectorsโ€, โ€œlinear formsโ€, โ€œrow vectorsโ€ ๏‚ง Vectors to be projected on Transposition ๏‚ง Convert vectors into projectors and vice versa

  49. Vectors ๐ฒ T โ‹… ๐ณ โ†’ โ„ Inner product (as a generalized โ€œprojectionโ€) ๏‚ง Matrix-product ๐๐ฉ๐ฆ๐ฏ๐ง๐จ โ‹… ๐ฌ๐ฉ๐ฑ โ€ž ๐ฒ โ‹… ๐ณ โ€œ = ๐ฒ, ๐ณ = ๐ฒ T โ‹… ๐ณ ๏‚ง People use all three notations ๏‚ง Meaning of โ€œ โ‹… โ€ clear from context

  50. Matrix-Vector Products ๐ฒ ๐ โ‹… ๐ฒ = ๐ณ โ‹… + โ‹… + โ‹… + โ‹… ยฐ โ‹… โ‹… ยฐ โ‹… = ยฐ โ‹… ๐ ๐ณ ยฐ โ‹… ยฐ Two Interpretations ๏‚ง Linear combination of column vectors ๏‚ง Projection on row (co-)vectors

  51. Matrix Algebra We can add and scalar multiply ๏‚ง Matrices and vectors (special case) We can matrix-multiply ๏‚ง Matrices with other matrices (execute one-after-another) ๏‚ง Vectors in certain cases (next) We can โ€œdivideโ€ by some (not all) matrices ๏‚ง Determine inverse matrix ๏‚ง Full-rank, square matrices only

  52. Algebraic Rules: Addition Settings Addition: like real numbers ๐, ๐‚, ๐ƒ โˆˆ โ„ ๐‘œร—๐‘› (โ€œcommutative groupโ€) (matrices, same size) ๏‚ง Prerequisites: ๏‚ง Number of rows match ๏‚ง Number of columns match ๏‚ง Associative: ๐ + ๐‚ + ๐ƒ = ๐ + ๐‚ + ๐ƒ ๏‚ง Commutative: ๐ + ๐‚ = ๐‚ + ๐ ๏‚ง Subtraction: ๐ + โˆ’๐ = ๐Ÿ ๏‚ง Neutral Op.: ๐ + ๐Ÿ = ๐

  53. Algebraic Rules: Scalar Multiplication Scalar Multiplication: Vector space ๏‚ง Prerequisites: Settings ๐œ‡ โˆˆ โ„ ๏‚ง Always possible ๐, ๐‚ โˆˆ โ„ ๐‘œร—๐‘› ๏‚ง Repeated Scaling: ๐œ‡ ๐œˆ๐ = ๐œ‡๐œˆ ๐ (same size) ๏‚ง Neutral Operation: 1 โ‹… ๐ = ๐ ๏‚ง Distributivity 1: ๐œ‡(๐ + ๐‚) = ๐œ‡๐ + ๐œ‡๐‚ ๏‚ง Distributivity 2: ๐œ‡ + ๐œˆ ๐ = ๐œ‡๐ + ๐œˆ๐ So far: ๏‚ง Matrices form vector space ๏‚ง Just different notation, same semantics!

  54. Algebraic Rules: Multiplication Multiplication: Non-Commutative Ring / Group ๏‚ง Prerequisites: ๏‚ง Number of columns right = number of rows left ๏‚ง Associative: ๐ โ‹… ๐‚ โ‹… ๐ƒ = ๐ โ‹… ๐‚ โ‹… ๐ƒ ๏‚ง Not commutative: often ๐ โ‹… ๐‚ โ‰  ๐‚ โ‹… ๐ ๏‚ง Neutral Op.: ๐ โ‹… ๐‰ = ๐ ๐ โ‹… ๐ โˆ’1 = ๐‰ ๏‚ง Inverse: Set of invertible matrices: ๏‚ง Additional prerequisite: โ€“ Matrix must be square! ๐ป๐‘€ ๐‘’ โŠ‚ โ„ ๐‘’ร—๐‘’ โ€“ Matrix must have full rank โ€œgeneral linear groupโ€

  55. Algebraic Rules: Multiplication Settings Multiplication: Non-Commutative Ring / Group ๐ โˆˆ โ„ ๐‘œร—๐‘› ๏‚ง Prerequisites: ๐‚ โˆˆ โ„ ๐‘›ร—๐‘™ ๏‚ง Number of columns right ๐ƒ โˆˆ โ„ ๐‘™ร—๐‘š = number of rows left ๏‚ง Associative: ๐ โ‹… ๐‚ โ‹… ๐ƒ = ๐ โ‹… ๐‚ โ‹… ๐ƒ ๏‚ง Not commutative: often ๐ โ‹… ๐‚ โ‰  ๐‚ โ‹… ๐ ๏‚ง Neutral Op.: ๐ โ‹… ๐‰ = ๐ ๐ โ‹… ๐ โˆ’1 = ๐‰ ๏‚ง Inverse: Set of invertible matrices: ๏‚ง Additional prerequisite: โ€“ Matrix must be square! ๐ป๐‘€ ๐‘’ โŠ‚ โ„ ๐‘’ร—๐‘’ โ€“ Matrix must have full rank โ€œgeneral linear groupโ€

  56. Transposition Rules Transposition ๐ + ๐‚ T = ๐ T + ๐‚ T = ๐‚ T + ๐ T ๏‚ง Addition: ๐œ‡๐ T = ๐œ‡๐ T ๏‚ง Scalar-mult.: ๐ โ‹… ๐‚ T = ๐‚ T โ‹… ๐ T ๏‚ง Multiplication: ๐ T T = ๐ ๏‚ง Self-inverse: ๐ โ‹… ๐‚ โˆ’1 = ๐‚ โˆ’1 โ‹… ๐ โˆ’1 ๏‚ง (Inversion:) ๐ T โˆ’1 = ๐ โˆ’1 T ๏‚ง Inverse-transp.: ๐ T = ๐ โˆ’1 โ‡” ๐ is orthogonal ๏‚ง Othogonality:

  57. Matrix Multiplication Matrix Multiplication ๐ โ‹… ๐‚ โˆ’ ๐› 1 โˆ’ | | โ‹ฎ ๐œ 1 โ‹ฏ ๐œ ๐‘’ = โ‹… โˆ’ ๐› ๐‘’ โˆ’ | | โ‹ฑ โ‹ฐ = ๐› ๐‘— , ๐œ ๐‘˜ โ‹ฐ โ‹ฑ ๏‚ง Scalar products of rows and columns

  58. Orthogonal Matrices Othogonal Matrices ๏‚ง (i.e., column vectors ortho normal ) ๐ ๐‘ˆ = ๐ โˆ’1 ๏‚ง Proof: previous slide.

Recommend


More recommend