session4 normsand inner products
play

Session4: Normsand inner-products Optimization and Computational - PowerPoint PPT Presentation

Session4: Normsand inner-products Optimization and Computational Linear Algebra for Data Science Lo Miolane Contents 1. Norms & inner-products 2. Orthogonality 1 3. Orthogonal projection 4. Proof of the Cauchy-Schwarz inequality


  1. Session4: Normsand inner-products Optimization and Computational Linear Algebra for Data Science Léo Miolane

  2. Contents 1. Norms & inner-products 2. Orthogonality 1 3. Orthogonal projection 4. Proof of the Cauchy-Schwarz inequality

  3. Normsandinner-products Norms and inner-products 1/20

  4. Questions Norms machine learning : in - H2 Euclidean H measure norm → • distances . ^ dot product Euclidean a. y . = ftp.Y-yuz-CG-it-3 ask ) " regularization " for Use norms • Loss ( data , a) + thalli with a ER " minimize { + Make Norms and inner-products 2/20

  5. Questions Norms and inner-products 2/20

  6. Questions Norms and inner-products 2/20

  7. Orthogonality Orthogonality 3/20

  8. Definition Definition We say that vectors x and y are orthogonal if È x, y Í = 0 . We write then x ‹ y . We say that a vector x is orthogonal to a set of vectors A if x is orthogonal to all the vectors in A . We write then x ‹ A . Exercise: If x is orthogonal to v 1 , . . . , v k then x is orthogonal to any linear combination of these vectors i.e. x ‹ Span( v 1 , . . . , v k ) . ifeng.se ::÷ . q 5) Guy > = details > t.itanefa.tk E Io to =o Orthogonality 4/20

  9. ⇒ Pythagorean Theorem Theorem (Pythagorean theorem) Let Î · Î be the norm induced by È · , · Í . For all x, y œ V we have ① € ∆ Î x + y Î 2 = Î x Î 2 + Î y Î 2 . x ‹ y ≈ Proof. Katy 112 ( nty , at y > = = ling THE t ⇤ Orthogonality 5/20

  10. ⇒ ⇒ Application to random variables ✓ = f secmoondmeuf ) variables with finite random define kx,y>=LfI X , Y For we , 11 × 11 =T ¥ ' the norm induced is X , Yhauezeiome-au.EE Let's that assume • Cov CX , Y ) =o ECXYT XIY - o - equivalent By Pyth them this is to . . 11 × +4112 11 × 112 t 114112 = = Efcxt 4723 - Voix ) + Vaecyj Va ¥ = Orthogonality 6/20

  11. Orthogonal & orthonormal families Definition We say that a family of vectors ( v 1 , . . . , v k ) is: orthogonal if the vectors v 1 , . . . , v n are pairwise orthogonal, i.e. È v i , v j Í = 0 for all i ” = j . orthonormal if it is orthogonal and if all the v i have unit norm: - = Î v 1 Î = · · · = Î v k Î = 1 . - - basis of Rn Example : is orthonormal canonical • the • ( (f) , ft ) ) orthogonal but not is orthonormal Orthogonality 7/20

  12. Coordinates in an orthonormal basis Proposition A vector space of finite dimension admits an orthonormal basis. Proposition Assume that dim( V ) = n and let ( v 1 , . . . , v n ) be an orthonormal basis of V . Then the coordinates of a vector x œ V in the basis ( v 1 , . . . , v n ) are ( È v 1 , x Í , . . . , È v n , x Í ) : - ① x = È v 1 , x Í v 1 + · · · + È v n , x Í v n . = have ⇒ rvn Proof tan Un : we t - . - for some - an ER ar - ' HEIL Gave t - tan un , Qi > = = - - Orthogonality 8/20

  13. Coordinates in an orthonormal basis Let n , y EVERY Cue , a) Vz tan , a > Vn t n = - - - T ae → n Cy , y > Vst - t Lun , ay > Un y - - - - - - Ps Bn - tpnvn ) ( my > = ( airs t . Reva t - - tannin , - - = E. Et ai fjLvi,v =/ 1 if i - j otherwise 0 + an pre dept t = - - - = FaEt---aI Hall Orthogonality 9/20

  14. Proof Orthogonality 10/20

  15. Orthogonalprojection Orthogonal projection 11/20

  16. Picture From now, È · , · Í denotes the Euclidean dot product, and Î · Î the Euclidean norm. which the vector y of S the closest What is is a ? to I den , s ) t ¥ s ( sobs pace ) Orthogonal projection 12/20

  17. Orthogonal projection and distance to a subspace Definition Let S be a subspace of R n . The orthogonal projection of a vector x onto S is defined as the vector P S ( x ) in S that minimizes the ← the rectory ES distance to x : ② P S ( x ) def = arg min Î x ≠ y Î . that nphiamjy.es y ∈ S The distance of x to the subspace S is then defined as d ( x, S ) def = min y ∈ S Î x ≠ y Î = Î x ≠ P S ( x ) Î . - - a ¢ • if a # Bca ) S then a = Ps Ca ) • if then a E S Orthogonal projection 13/20

  18. Computing orthogonal projections Proposition Let S be a subspace of R n and let ( v 1 , . . . , v k ) be an orthonormal basis of S . Then for all x œ R n , P S ( x ) = È v 1 , x Í v 1 + · · · + È v k , x Í v k . - Let YES Proof : - taa Va aah y = t - - , for - aa ER some h . - - EYE - y 112 Hn = = ¥ , ai Ily If • k = ¥ - • ( NYS di la , Vi ) = La , as vet . - tamed , - Orthogonal projection 14/20

  19. Proof t o ¥ dg2-2aiCa = Half Ha - YR :*÷÷:÷÷: - given by minimizer is y i - . - t Lana > re Ps (a) Ca , # ve t = . - 22 , Cami > ¥ 1 > flail = di - of flail = Zai ' Gi ) f- - Ka , vis * - the aint = Ca , vis Orthogonal projection o 15/20 → =

  20. Consequence Ps Ca ) re t ok t :IEi÷ ¥ ;If = - - - at define ' il ' :÷÷ , Vita = fu = ( Va , a) Os t - t Loa , a) Vee - - . , Orthogonal projection 16/20

  21. Consequence Corollary For all x œ R n , x ≠ P S ( x ) is orthogonal to S . Î P S ( x ) Î Æ Î x Î . = Orthogonal projection 17/20

  22. ProofofCauchy-Schwarz inequality Proof of Cauchy-Schwarz inequality 18/20

  23. Cauchy-Schwarz inequality Theorem Let Î · Î be the norm induced by the inner product È · , · Í on the vector space V . Then for all x, y œ V : I | È x, y Í | Æ Î x Î Î y Î . (1) Moreover, there is equality in (1) if and only if x and y are linearly = dependent, i.e. x = α y or y = α x for some α œ R . Proof : my EV Let result • If is obvious the a - O 0 de y = . assume that day ¥ 8 • From now we Proof of Cauchy-Schwarz inequality 19/20

  24. Proof IR → R f We define : - talk E t Hy + ¥ Half Ily 112 - It La , y > for TER , fct ) - 2 poltyomialcint ) = a Tyree - fettes • Ranch # I : for all t Remark # 2 fct ) 30 : • . d of fct ) is discriminant so Hence the → ÷ ! ! a=a T-4" to Proof of Cauchy-Schwarz inequality 20/20

  25. Proof if and only equality kn.gs/--HaUllyH There is if A- O t that There exists such → some fat - O - " that - ta -0 - talk -0 this y means Hy I ; - ta s . - Proof of Cauchy-Schwarz inequality 20/20

  26. Questions? 21/20

  27. Questions? KI cos O = ly Ik Is 21/20

  28. ⇐ Orthogonal matrices Definition A matrix A œ R n × n is called an orthogonal matrix if its columns are = - f an orthonormal family. = ten - go.a.g.ae - ( ÷ : matias Isis :) Ro . 22/20

  29. ⇒ A proposition Proposition Let A œ R n × n . The following points are equivalent: 1. A is orthogonal. ' G O AT = A ' 2. A T A = Id n . A invertible and G' 3. AA T = Id n A- → µ ⇐ s - i÷:t÷÷÷ : - y - - 23/20

  30. Orthogonal matrices & norm Proposition Let A œ R n × n be an orthogonal matrix. Then A preserves the dot product in the sense that for all x, y œ R n , È Ax, Ay Í = È x, y Í . In particular if we take x = y we see that A preserves the Euclidean norm: Î Ax Î = Î x Î . 24/20

Recommend


More recommend