sensitivity study of at the belle ii experiment
play

Sensitivity study of at the Belle II experiment Outline Michel - PowerPoint PPT Presentation

Sensitivity study of at the Belle II experiment Outline Michel Hernndez Villanueva, B-factories and Cinvestav Group physics. Mexico City Second class currents decay 28 Sep 2017


  1. 
 Sensitivity study of πœβ†’πœƒπœŒπœ‰ at the Belle II experiment Outline Michel HernΓ‘ndez Villanueva, β€’ B-factories and 𝜐 Cinvestav Group 
 physics. Mexico City β€’ Second class currents β€’ πœβ†’πœƒπœŒπœ‰ decay 28 Sep 2017 β€’ Outlook.

  2. B Factories β€’ B-Factory 
 BR ( Ξ₯ (4 S ) β†’ B Β― B ) > 96% 10.58 GeV β€’ 𝝊 factory too! 
 𝝉 (e + e - β€”> 𝜱 (4s)) = 1.05 nb 
 𝝉 (e + e - β€”> 𝝊 𝝊 ) = 0.92 nb Michel H. Villanueva 2 2

  3. Integrated Luminosity of B factories 6.54x10 8 𝝊 ’s 3.98x10 8 𝝊 ’s High-luminosity experiments. Michel H. Villanueva 3 3

  4. SuperKEKB β€’ Super B-Factory 
 (And 𝝊 factory too!) β€’ Integrated luminosity expected: 50 ab -1 
 (4.6x10 10 𝝊 pairs) β€’ Full physics program starts: 
 late 2018 @KEK 
 Tsukuba, Japan Michel H. Villanueva 4

  5. Belle II Detector Michel H. Villanueva 5

  6. Belle II MC samples MC Sample: 
 ~ 2 ab -1 
 (1 ab -1 for training, 
 1 ab -1 for analysis). Michel H. Villanueva 6

  7. 
 Mexican Contribution β€’ 504 cores 
 ~1.4% CPU usage 
 3.7 KHS06 
 of the grid 70 TB storage 7

  8. The πœβ†’πœƒπœŒπœ‰ decay β€’ In this work, we are studying the feasibility to measure the decay 
 πœβ†’πœƒπœŒπœ‰ , 
 in order to get information related at: β€’ Second class currents. β€’ Scalar and tensorial Disadvantage: We cannot detect πœ‰ currents. Michel H. Villanueva 8

  9. The πœβ†’πœƒπœŒπœ‰ decay Mechanisms in the SM: isospin violation 1 β€’ + The corresponding suppression of the SM contribution can make new β€’ physics visible. Charged Higgs Leptoquark 
 exchange exchange 1 R. Escribano, S. Gonzalez, P. Roig; Phys.Rev. D94 (2016) no.3, 034008 Michel H. Villanueva 9

  10. Some recent theoretical predictions BR V (x10 5 ) BR S (x10 5 ) BR V+S (x10 5 ) Ref Model [8] 0.36 1.0 1.36 MDM, 1 resonance [9] [0.2, 0.6] [0.2, 2.3] [0.4, 2.9] MDM, 1 and 2 resonances [10] 0.44 0.04 0.48 Nambu-Jona-Lasinio Analiticity, Unitarity [11] 0.13 0.20 0.33 [12] 0.26 1.41 1.67 3 coupled channels Largest difference comes 
 [8] S. Nussinov + A. Soffer, PRD78, (2008) from scalar form factor. [9] N. Paver + Riazuddin, PRD82, (2010) [10] M. Volkov D. Kostunin, PRD82, (2012) [11] S. Descotes-Genon+B. Moussallam, EJPC74, (2014) [12] R. Escribano, S. Gonzalez, P. Roig; Phys.Rev. D94 (2016) no.3, 034008 β€’ BR( πœβ†’πœƒπœŒπœ‰ ) ~ 10 -5 Accesible at Belle II luminosity. Michel H. Villanueva 10

  11. The πœβ†’πœƒπœŒπœ‰ decay NP contributions (scalar and tensorial currents) can be studied in the β€’ framework of an effective field theory 1 Constraints on scalar and tensor β€’ couplings can be obtained from CLEO experimental upper limits on branching Belle fractions. SM CLEO BaBar BaBar Belle SM 1 E. A. GarcΓ©s, MHV, G. LΓ³pez Castro, P. Roig; arXiv:1708.07802 Michel H. Villanueva 11

  12. Previous Results 470 fb -1 670 fb -1 β€’ This decay mode should have already been discovered if there were no strong background. β€’ Control of the background is essential. Michel H. Villanueva 12

  13. Thrust axis cm Β· Λ† β€’ Thrust axis: such that 
 Λ† P i | ~ n thrust | n thrust p i V thrust = P i | ~ p i cm | V thrust is maximum. Λ† n thrust The thrust axis define a plane which splits the signal side space in two. tag side Michel H. Villanueva 13

  14. 2 ways to reconstruct πœƒ cm Β· Λ† β€’ Thrust axis: such that 
 Λ† P i | ~ n thrust | n thrust p i V thrust = p i cm | P i | ~ V thrust is maximum. 3-prong 1-prong BR( πœƒ β€”> 𝜌𝜌𝜌 0 ) = 22.92% BR( πœƒ β€”> 𝛿𝛿 ) = 39.41% Ξ³ Ξ³ Ο€ Ο€ Ξ³ Ξ³ Ο€ Ο€ 0 Ξ½ Ο„ Signal side Ο€ Ξ· Ξ· Ξ½ Ο„ Ο„ e + e + e βˆ’ Ο„ e βˆ’ Ο„ Ο„ Tag side ` ` Β― Β― Ξ½ ` Ξ½ ` Ξ½ Ο„ Ξ½ Ο„ Michel H. Villanueva 14

  15. πœβ†’πœƒπœŒπœ‰ signal events Selection criteria :tag + 1 or 3 charged + 2 or 3 𝛿 . β€’ Signal events generated: 4M . 
 β€’ (2M for training and 2M for sensitivity study). E ff : 13.56% E ff : 3.70% 3 Γ— 10 Events / ( 0.002 ) 200 180 160 Ο€ 0 β†’ Ξ³Ξ³ 140 120 100 80 60 Ξ· β†’ Ξ³Ξ³ 40 20 0 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 2 Invariant Mass Ξ³ Ξ³ [GeV/c ] Ξ· β†’ Ο€ + Ο€ βˆ’ Ο€ 0 Mis-reconstructed 𝜌 0 𝛿 from other sources 3-prong 1-prong BR( πœƒ β€”> 𝛿𝛿 ) = 39.41% BR( πœƒ β€”> 𝜌𝜌𝜌 0 ) = 22.92% Michel H. Villanueva 15

  16. πœβ†’πœƒπœŒπœ‰ bkg events E ff : 0.34% 1-prong 1 ab -1 MC Background sources: 
 β€’ - 𝝊𝝊 pair 
 - bb pair 
 𝜌 0 veto 
 tau pair - qq pair applied. E ff : 0.002% 1 ab -1 MC E ff : 0.006% bb pair qq pair 1 ab -1 MC Michel H. Villanueva 16

  17. BDT variables (1-prong) TMVA used for this test. 3 10 Γ— 0.12 No. de Background Eficiencia β€’ cos( πœ„ miss ) β€’ ∠ ( πœƒ , 𝜌 ) 1200 0.1 ✏ β€’ PID e ( 𝜌 ) 1000 √ β€’ ∠ (p miss , V thrust ) a/ 2 + B Optimal 
 0.08 cut 800 β€’ PID Β΅ ( 𝜌 ) β€’ M miss 0.06 600 β€’ PID K ( 𝜌 ) β€’ P t ( 𝜌 ) 0.04 400 β€’ E( 𝛿 ) β€’ πœƒ ( πœƒ ) 0.02 Optimization 200 Punzi proposed by 0 Punzi, G. 
 β€’ ∠ ( 𝛿 , 𝛿 ) πœƒ βˆ’ 0.1 βˆ’ 0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 Corte en BDT at arXiv preprint physics/0308063 Correlation Matrix (signal) Correlation Matrix (background) TMVA overtraining check for classifier: BDT Linear correlation coefficients in % Linear correlation coefficients in % 100 100 dx (p ,V ) (p ,V ) -19 33 -18 100 Signal (test sample) Signal (training sample) -1 25 -2 -32 37 4 -6 -1 100 4 4 1 -2 miss thrust miss thrust 80 80 / cos( ΞΈ ) cos( ΞΈ ) 6 -55 -6 -3 8 100 -18 Background (test sample) Background (training sample) -3 -54 -1 14 2 100 1 -4 -2 (1/N) dN miss miss 5 60 60 #PID ( ) #PID ( ) Kolmogorov-Smirnov test: signal (background) probability = 0.81 (0.063) Ο€ -2 -9 -2 2 9 2 -2 100 -1 Ο€ 4 1 3 3 -7 100 -2 e e 40 40 #PID ( ) #PID ( Ο€ ) -3 8 18 6 100 -6 Ο€ -6 6 6 -3 100 -4 -24 -4 -2 2 -2 12 -7 -2 Β΅ Β΅ 4 20 20 #PID ( ) #PID ( Ο€ ) -20 -5 -5 100 Ο€ 3 -10 -6 100 -3 8 -1 7 -12 -4 14 4 -4 -2 1 K K U/O-flow (S,B): (0.0, 0.0)% / (0.0, 0.0)% E( ) + E( ) E( ) + E( ) Ξ³ Ξ³ 0 Ξ³ Ξ³ 5 -8 -5 -50 -9 100 -6 6 -3 33 0 4 -24 1 -54 -8 100 -5 6 2 -1 37 1 2 1 2 3 ∠ ( Ξ· , Ο€ ) -15 -60 41 100 -8 -12 18 9 -32 ∠ ( Ξ· , Ο€ ) -3 -6 15 26 100 -9 -2 12 -4 -19 20 20 βˆ’ βˆ’ M M -7 -37 100 41 -54 -5 8 2 -2 -3 -19 10 100 26 -50 -4 6 3 -6 miss βˆ’ 40 miss βˆ’ 40 Ξ· Ξ· 2 19 100 -20 -3 -54 10 100 10 15 -5 -10 3 -55 1 -2 -1 4 Ξ· Ξ· βˆ’ 60 βˆ’ 60 Pt 100 -37 -60 -9 25 Pt 100 -19 -6 -8 3 -6 12 -24 7 -24 1 -1 1 1 4 Ο€ Ο€ βˆ’ 80 βˆ’ 80 ∠ ( Ξ³ , Ξ³ ) ∠ ( Ξ³ , Ξ³ ) 1 100 19 -15 -3 100 10 -3 -3 5 6 12 -7 4 -1 -4 -2 -1 1 -2 4 Ξ· Ξ· βˆ’ 100 βˆ’ 100 Ξ· E( Ξ· E ∠ Pt M #PID #PID #PID cos( ∠ ∠ P M # # # c ∠ ( ∠ (p ( ∠ ( P P P o ( Ξ³ , ( Ξ³ Ξ³ t ( Ξ³ I s p Ξ· ) + E( , Ξ· ) I D D I D ( Ξ³ Ξ· , Ξ³ Ξ· ) miss Ο€ ΞΈ ) miss , Ο€ + ΞΈ Ο€ ) ( ( ( ,V Ο€ ) E ( ( ( Ο€ Ο€ ) Ο€ Ο€ Ο€ ) Ο€ , V 1 ) Β΅ e ) ) miss 1 ( ) Β΅ e ) ) miss Ξ³ K miss Ξ³ K miss Ξ· ) Ξ· ) thrust ) thrust ) 2 2 0 0.6 0.4 0.2 0 0.2 0.4 βˆ’ βˆ’ βˆ’ Michel H. Villanueva 17 BDT response

  18. Optimal BDT cut Signal E ff cut = 41.87% 1-prong 20000 Events / ( 0.0025 ) 20000 N sig = 271,258 Events / ( 0.004 ) 18000 = 1.039 0.010 Ξ± Β± E ff : 13.56% 16000 18000 = 0.540854 0.000051 Β΅ Β± 14000 = 0.010962 0.000038 Οƒ Β± 16000 12000 n = 2.309 0.039 Β± 14000 10000 8000 12000 6000 10000 4000 2000 8000 0 0.4 0.45 0.5 0.55 0.6 0.65 6000 2 Invariant Mass Ξ³ Ξ³ [GeV/c ] N sig =157,680 
 4000 E ff : 7.88% 2000 0 0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6 2 Invariant Mass ( ) [GeV/c ] Ξ· Ξ³ Ξ³ Michel H. Villanueva 18

  19. Optimal BDT cut Background E ff cut = 84.51% 1-prong Events / ( 0.0025 ) MC events 0 ( ) ρ β†’ Ο€ Ο€ Ξ½ Events / ( 0.0025 ) MC events MC events 50000 (a ) β†’ Ο€ Ο€ Ο€ Ξ½ 1 0 0 0 ( ) Ο€ Ο€ Ξ³ Ξ½ ( ρ β†’ Ο€ Ο€ ) Ξ½ ρ β†’ Ο€ Ο€ Ξ½ 7000 b b (a ) (a β†’ Ο€ Ο€ Ο€ ) Ξ½ β†’ Ο€ Ο€ Ο€ Ξ½ q q 1 1 40000 0 0 Ο€ Ο€ Ξ³ Ξ½ Ο€ Ο€ Ξ³ Ξ½ N bkg = 2,694,408 b b 6000 b b q q q q 30000 E ff : 0.34% 5000 20000 4000 10000 3000 98,146 events 0 0.4 0.45 0.5 0.55 0.6 0.65 2 Invariant Mass Ξ³ Ξ³ [GeV/c ] 2000 N bkg =417,217 
 1000 E ff : 5.26x10 -4 𝜈 Β± 3 Οƒ 0 0.4 0.45 0.5 0.55 0.6 0.65 2 Invariant Mass [GeV/c ] Ξ³ Ξ³ Michel H. Villanueva 19

  20. πœβ†’πœƒπœŒπœ‰ bkg events E ff : 0.028% 3-prong 1 ab -1 MC Background sources: 
 β€’ - 𝝊𝝊 pair 
 3 𝛒𝛒 0 is the mayor issue. - bb pair 
 (This depends of the hadronic input in the generation of MC) - qq pair tau pair E ff : 5.6x10 -6 bb pair E ff : 7.6x10 -6 1 ab -1 MC qq pair 1 ab -1 MC Michel H. Villanueva 20

Recommend


More recommend