scaling limit of baxter permutations and bipolar
play

Scaling limit of Baxter permutations and Bipolar orientations - PowerPoint PPT Presentation

Scaling limit of Baxter permutations and Bipolar orientations Mickal Maazoun Oxford University Joint work with Jacopo Borga, University of Zrich "Banff", 17 september 2020 version 2 of the slides, figures fixed Limit shapes


  1. Scaling limit of Baxter permutations and Bipolar orientations Mickaël Maazoun — Oxford University Joint work with Jacopo Borga, University of Zürich "Banff", 17 september 2020 version 2 of the slides, figures fixed

  2. Limit shapes of uniform restricted permutations (E. Slivken) Av(231) Av(4321) S n Av(4231) Av(2413,3142) Av(2413, 3142, 2143, 34512) (Madras-Yildrim) ={separables}

  3. Limit shapes of uniform restricted permutations (E. Slivken) Av(231) Av(4321) S n Av(4231) Av(2413,3142) Av(2413, 3142, 2143, 34512) (Madras-Yildrim) ={separables}

  4. Permutons A permuton is a 4 probability measure on 4 [0 , 1] 2 with both 1 2 marginals uniform. � ⇒ compact metric space (with weak convergence). Permutations of all sizes are densely embedded in permutons. σ µ σ n 1 density 0 density n 1 0 1 n 0 1

  5. Baxter Permutations A Baxter permutation avoids the vincular patterns 2413 and 3142. In other words, a permutation σ is Baxter if it is not possible to find i < j < k s.t. σ ( j + 1 ) < σ ( i ) < σ ( k ) < σ ( j ) or σ ( j ) < σ ( k ) < σ ( i ) < σ ( j + 1 ) .

  6. Baxter Permutations A Baxter permutation avoids the vincular patterns 2413 and 3142. In other words, a permutation σ is Baxter if it is not possible to find i < j < k s.t. σ ( j + 1 ) < σ ( i ) < σ ( k ) < σ ( j ) or σ ( j ) < σ ( k ) < σ ( i ) < σ ( j + 1 ) . ( n + 1 k − 1 )( n + 1 k )( n + 1 k + 1 ) 2 3 n + 5 Counted by the Baxter numbers (A001181) � n ∼ √ k � 1 ( n + 1 1 )( n + 1 2 ) 3 n 4 π which count many other objects (see Felsner,Fusy,Noy,Orden 08)

  7. Baxter Permutations A Baxter permutation avoids the vincular patterns 2413 and 3142. In other words, a permutation σ is Baxter if it is not possible to find i < j < k s.t. σ ( j + 1 ) < σ ( i ) < σ ( k ) < σ ( j ) or σ ( j ) < σ ( k ) < σ ( i ) < σ ( j + 1 ) . ( n + 1 k − 1 )( n + 1 k )( n + 1 k + 1 ) 2 3 n + 5 Counted by the Baxter numbers (A001181) � n ∼ √ k � 1 ( n + 1 1 )( n + 1 2 ) 3 n 4 π which count many other objects (see Felsner,Fusy,Noy,Orden 08) Theorem. (Borga, M) There exists a random permuton µ B such that if σ n is a uniform random Baxter permutation of size n, µ σ n → µ B in distribution in the space of permutons.

  8. Baxter permutations and bipolar oriented maps σ ∈ P n A Baxter permutation avoids the vincular patterns 2413 and 3142.

  9. Baxter permutations and bipolar oriented maps σ ∈ P n A Baxter permutation avoids the vincular patterns 2413 and 3142.

  10. Baxter permutations and bipolar oriented maps σ ∈ P n A Baxter permutation avoids the vincular patterns 2413 and 3142.

  11. Baxter permutations and bipolar oriented maps σ ∈ P n A Baxter permutation avoids the vincular patterns 2413 and 3142.

  12. Baxter permutations and bipolar oriented maps σ ∈ P n A Baxter permutation avoids the vincular patterns 2413 and 3142.

  13. Baxter permutations and bipolar oriented maps σ ∈ P n A Baxter permutation avoids the vincular patterns 2413 and 3142.

  14. Baxter permutations and bipolar oriented maps σ ∈ P n A Baxter permutation avoids the vincular patterns 2413 and 3142.

  15. Baxter permutations and bipolar oriented maps σ ∈ P n A Baxter permutation avoids the vincular patterns 2413 and 3142.

  16. Baxter permutations and bipolar oriented maps σ ∈ P n A Baxter permutation avoids the vincular patterns 2413 and 3142.

  17. Baxter permutations and bipolar oriented maps σ ∈ P n A Baxter permutation avoids the vincular patterns 2413 and 3142.

  18. Baxter permutations and bipolar oriented maps σ ∈ P n

  19. Baxter permutations and bipolar oriented maps σ ∈ P n m � OP − 1 ( σ ) ∈ O n Theorem (Bonichon, Bousquet-Mélou, Fusy ’11) OP − 1 : P n → O n is a bijection.

  20. Baxter permutations and bipolar oriented maps σ ∈ P n m � OP − 1 ( σ ) ∈ O n m ∗ � OP − 1 ( σ ∗ ) ∈ O n Theorem (Bonichon, Bousquet-Mélou, Fusy ’11) OP − 1 : P n → O n is a bijection.

  21. Baxter permutations and bipolar oriented maps σ ∈ P n m � OP − 1 ( σ ) ∈ O n m ∗ � OP − 1 ( σ ∗ ) ∈ O n Theorem (Bonichon, Bousquet-Mélou, Fusy ’11) OP − 1 : P n → O n is a bijection.

  22. Baxter permutations and bipolar oriented maps σ ∈ P n m � OP − 1 ( σ ) ∈ O n m ∗ � OP − 1 ( σ ∗ ) ∈ O n Theorem (Bonichon, Bousquet-Mélou, Fusy ’11) OP − 1 : P n → O n is a bijection.

  23. Baxter permutations and bipolar oriented maps σ ∈ P n m � OP − 1 ( σ ) ∈ O n m ∗ � OP − 1 ( σ ∗ ) ∈ O n T ( m ) Theorem (Bonichon, Bousquet-Mélou, Fusy ’11) OP − 1 : P n → O n is a bijection.

  24. Baxter permutations and bipolar oriented maps σ ∈ P n m � OP − 1 ( σ ) ∈ O n m ∗ � OP − 1 ( σ ∗ ) ∈ O n T ( m ∗∗ ) T ( m ) T ( m ∗ ) T ( m ∗∗∗ ) Theorem (Bonichon, Bousquet-Mélou, Fusy ’11) OP − 1 : P n → O n is a bijection.

  25. Baxter permutations and bipolar oriented maps σ ∈ P n m � OP − 1 ( σ ) ∈ O n m ∗ � OP − 1 ( σ ∗ ) ∈ O n T ( m ∗∗ ) T ( m ) T ( m ∗ ) T ( m ∗∗∗ ) Theorem (Bonichon, Bousquet-Mélou, Fusy ’11) OP − 1 : P n → O n is a bijection.

  26. Baxter permutations and bipolar oriented maps σ ∈ P n m � OP − 1 ( σ ) ∈ O n m ∗ � OP − 1 ( σ ∗ ) ∈ O n T ( m ∗∗ ) T ( m ) T ( m ∗ ) T ( m ∗∗∗ ) Theorem (Bonichon, Bousquet-Mélou, Fusy ’11) OP − 1 : P n → O n is a bijection.

  27. Baxter permutations and bipolar oriented maps σ ∈ P n m � OP − 1 ( σ ) ∈ O n m ∗ � OP − 1 ( σ ∗ ) ∈ O n T ( m ∗∗ ) T ( m ) T ( m ∗ ) T ( m ∗∗∗ ) Theorem (Bonichon, Bousquet-Mélou, Fusy ’11) OP − 1 : P n → O n is a bijection.

  28. Baxter permutations and bipolar oriented maps σ ∈ P n m � OP − 1 ( σ ) ∈ O n m ∗ � OP − 1 ( σ ∗ ) ∈ O n T ( m ∗∗ ) T ( m ) T ( m ∗ ) T ( m ∗∗∗ ) Theorem (Bonichon, Bousquet-Mélou, Fusy ’11) OP − 1 : P n → O n is a bijection. Inverse bijection: OP ( m ) is the only permutation π such that the i -th edge in the exploration of T ( m ) is the π ( i ) -th edge in the exploration of T ( m ∗ )

  29. Bipolar orientations and walks in the quadrant

  30. Bipolar orientations and walks in the quadrant

  31. Bipolar orientations and walks in the quadrant

  32. Bipolar orientations and walks in the quadrant Theorem. (Kenyon-Miller-Sheffield-Wilson, 2010) Let ( 0 , X 1 + 1 , X 2 + 1 , . . . X n + 1 ) and ( 0 , Y n + 1 , Y n − 1 + 1 , . . . , Y 1 + 1 ) be the height processes of T ( m ) and T ( m ∗∗ ) . Denote OW ( m ) � W � ( X , Y ) . Then OW is a bijection between P n and the set W n of n -step walks in the cone from ( N , 0 ) to ( 0 , N ) and steps in ( 1 , − 1 ) ∪ ( − N ) × N . Y t X t

  33. Coalescent-walk processes Y t X t

  34. Coalescent-walk processes Y t X t

  35. Coalescent-walk processes Y t X t

  36. Coalescent-walk processes Y t X t

  37. Coalescent-walk processes Y t X t

  38. Coalescent-walk processes Y t X t

  39. Coalescent-walk processes Y t X t

  40. Coalescent-walk processes Y t X t

  41. Coalescent-walk processes Y t X t

  42. Coalescent-walk processes Y t X t

  43. Coalescent-walk processes Y t X t

  44. Coalescent-walk processes We construct a coalescent process Z � ( Z ( j ) ( i )) 1 ≤ j ≤ i ≤ n driven by ( X , Y ) . The branching structure of the trajectories is that of T ( m ∗ ) , but edges are visited in the order given by T ( m ) . Comparing the orders given by visit times and by the contour exploration allows to recover the permutation. Y t X t

  45. Scaling limits of coalescent-walk processes Theorem (Kenyon, Miller,Sheffield,Wilson) Let ( X n , Y n ) be the coding walk of a uniform bipolar orientation of size n . Then 1 2 n ( X n ( n · ) , Y n ( n · )) converges to a pair of Brownian excursions with √ cross-correlation − 1 / 2. This is peanosphere convergence of bipolar-oriented maps to SLE-decorated LQG.

  46. Scaling limits of coalescent-walk processes Theorem (Kenyon, Miller,Sheffield,Wilson) Let ( X n , Y n ) be the coding walk of a uniform bipolar orientation of size n . Then 1 2 n ( X n ( n · ) , Y n ( n · )) converges to a pair of Brownian excursions with √ cross-correlation − 1 / 2. This is peanosphere convergence of bipolar-oriented maps to SLE-decorated LQG.

  47. Scaling limits of coalescent-walk processes Theorem (Kenyon, Miller,Sheffield,Wilson) Let ( X n , Y n ) be the coding walk of a uniform bipolar orientation of size n . Then 1 2 n ( X n ( n · ) , Y n ( n · )) converges to a pair of Brownian excursions with √ cross-correlation − 1 / 2. This is peanosphere convergence of bipolar-oriented maps to SLE-decorated LQG. Theorem (Prokaj, Cinlar, Hajri, Karakus) Let ( X , Y ) be a pair of standard Brownian motions with cross-correlation coefficient ρ ∈ [ − 1 , 1 ) . Then the perturbed Tanaka’s equation dZ ( t ) � 1 { Z ( t ) > 0 } dY ( t ) − 1 { Z ( t ) ≤ 0 } dX ( t ) , t ≥ 0 has strong solutions.

Recommend


More recommend