savage in the market
play

Savage in the Market Federico Echenique Kota Saito California - PowerPoint PPT Presentation

Savage in the Market Federico Echenique Kota Saito California Institute of Technology Math. Econ. Conference Wisconsin September 27, 2014 Model / Utility Data / Behavior This paper: SEU Market behavior Utility and behavior


  1. Epstein (2000) Necessary Condition for prob. sophistication: if ∃ ( x , p ) and ( x ′ , p ′ ) � (i) p 1 ≥ p 2 � and p ′ 1 ≤ p ′ 2 with at least one strict ineq. (ii) x 1 > x 2 and x ′ 1 < x ′ 2 ⇒ Not Probability Sophisticated { ( x 1 , x 2 ) , ( x ′ 2 , x ′ 1 ) } satisfy conditions in SARSEU: so must have p 1 p ′ 2 ≤ 1 , p 2 p ′ 1 hence can’t violate Epstein’s condition.

  2. A probabilistically sophisticated data set violating SARSEU.

  3. x s 2 p k 2 p k 1 x k 1 x k 2 x s 1

  4. x s 2 x s 1

  5. x s 2 x s 1

  6. x s 2 x s 1

  7. x s 2 x s 1

  8. x s 2 x s 1

  9. x s 2 x s 1

  10. x s 2 x s 1

  11. x s 2 x s 1

  12. x s 2 x s 1

  13. x s 2 x s 1

  14. x s 2 x s 1

  15. x s 2 x s 1

  16. x s 2 x s 1

  17. x s 2 x s 1

  18. x s 2 x s 1

  19. x s 2 x s 1

  20. x s 2 x s 1

  21. x s 2 x s 1

  22. x s 2 x s 1

  23. x s 2 x s 1

  24. x s 2 x s 1

  25. x s 2 x s 1

  26. x s 2 x s 1

  27. x s 2 x s 1

  28. x s 2 x s 1

  29. x s 2 x s 1

  30. x s 2 x s 1

  31. x s 2 x s 1

  32. x s 2 x s 1

  33. x s 2 x s 1

  34. x s 2 x s 1

  35. x s 2 x s 1

  36. x s 2 x s 1

  37. x s 2 x s 1

  38. x s 2 p k 2 p k 1 x k 1 x k 2 x s 1

  39. Maxmin � U ( x ) = min µ s u ( x s ) µ ∈ M s ∈ S M is a convex set of priors.

  40. Maxmin ( x k , p k ) K k =1 is maxmin rational if ∃ ◮ convex set M ⊆ ∆ ++ ◮ and u ∈ C s.t. y ∈ B ( p k , p k · x k ) ⇒ min � � µ s u ( x k µ s u ( y s ) ≤ min s ) . µ ∈ M µ ∈ M s ∈ S s ∈ S

  41. Maxmin Proposition Let S = K = 2 . Then a dataset is max-min rational iff it is SEU rational. Example with S = 2 and K = 4 of a dataset that is max-min rational and violates SARSEU.

  42. Objective Probabilities � µ s u ( x s ) max p · x ≤ I ◮ Observables: µ , p , x ◮ Unobservables: u Varian (1983), Green and Srivastava (1986), and Kubler, Selden, and Wei (2013)

  43. Objective Probabilities Varian (1983), Green and Srivastava (1986): FOC µ s u ′ ( x s ) = λ p s , (linear ”Afriat” inequalities). Kubler, Selden, and Wei (2013): axiom on data.

  44. Objective Probabilities s ) = λ k p k u ′ ( x k s = λ k ρ k s , µ s ◮ ρ k s = p k s /µ s is a “risk neutral” price.

  45. Objective Probabilities (Strong Axiom of Revealed Exp. Utility (SAREU)) k ′ For any ( x k i i ) n s i , x i i =1 s.t. s ′ k ′ 1. x k i s i > x i s ′ i 2. each k appears in k i (on the left of the pair) the same number of times it appears in k ′ i (on the right): we have: n ρ k i � s i ≤ 1 . k ′ ρ i i =1 s ′ i Theorem A dataset is EU rational if and only if it satisfies SAREU.

  46. Savage Primitives: infinite S ; � on acts: information on all pairwise comparisons. Define � to be the rev. preference relation defined from a finite dataset ( x k , p k ): ◮ x k � y if y ∈ B ( p k , p k · x k ) ◮ x k ≻ y if . . . ◮ note: � is incomplete.

Recommend


More recommend