Role of multiple subband renormalization on the thermoelectric effect in correlated oxide superlattices Andreas Rüegg, Sebastian Pilgram and Manfred Sigrist Theoretische Physik, ETH Zürich, Switzerland
complex oxide heterostructure [SrTiO 3 ] 5 /[LaTiO 3 ] 1 band Mott insulator insulator annular dark field (STEM), Ohtomo et al., Nature (2002) Hvar, 2008 2
transition metal oxides - interfaces? manganites • bulk transition-metal oxides: - rich and complex phase diagrams cuprates - intrinsic functionalities : � ferroelectricity, superconductivity, CMR, ... - spin , charge and orbital degrees of freedom - strongly correlated electronic systems cf. semi- conductors • artificial nanoscale structures: - novel physics - stabilization of new phases - atomic , electronic and orbital reconstruction - clean doping Tokura, Nagaosa, Science (2000) Dagotto, Science (2005, 2007) 3 Chakhalian et al ., Science (2007) Okamoto, Millis, Nature (2004)
electronic reconstruction 3d-electron charge distribution • general: electronic phase at the interface differs from bulk phase. • important mechanism: transfer of electronic charge across the interface. • “simple” example: metallic interface between insulators. electron energy loss spectra, Ohtomo et al., Nature (2002) SrTiO 3 LaTiO 3 Ohtomo et al. (2002) band/Mott Ohtomo et al. (2004), Thiel et al. (2006), SrTiO 3 LaAlO 3 Reyren et al. (2007) insulators metallic SrTiO 3 LaVO 3 Hotta et al. (2007) SrVO 3 LaVO 3 Sheets et al. (2007) 4 Okamoto and Millis, Nature (2004)
single-particle picture real space: mutual doping (transfer of electronic charge from Mott to band insulator) leads to metallic interfac e. atomic limit: BI MI BI appropriate at high temperatures n 3 d ≈ 1 n 3 d ≈ 0 n 3 d ≈ 0 momentum space: interface states? - quantum confinement (superlattice structure) leads to multiple subbands in a quasi-two dimensional system. ν 3 - familiar from (and successfully applied in) semiconductor physics. 2 1 ! " BI MI BI # k y $ ! # ! " but ! ! ! ! ! " ! # $ # " ! k x how do local correlations modify this picture? 5
semiclassical perspective of transport N M quasi-particle dispersion Fermi surface: BI BI E k ν = E ν ( ε k ) MI MI MI E k ν = 0 in-plane non-interacting � momentum dispersion subband index � E ∇ T (i) multi-subband aspect: � electron-like and hole-like contributions, compensation possible. • e.g. thermopower, Hall constant, ... (ii) correlation effects: need hybridization of itinerant (a) group velocity renormalization � Z ν = ∂ E k ν and (almost) localized degrees � � (relevant for Drude weight) ∂ε k of freedom: interface! � FS (b) renormalization of particle-hole asymmetry ∂ 2 E k ν �� � � � ∂ E k ν � (relevant for thermopower) / α ν = ε k � ∂ε 2 ∂ε k � k FS (c) indirectly through the multi-subband aspect 6
outline • model: - extended single-orbital Hubbard model - effective low-energy theory (slave-boson mean-field theory) • generic “electronic structure” - multiple subbands - quasiparticle renormalization ( group velocity and particle-hole asymmetry ) • parallel transport - thermoelectric effects � Seebeck coefficient (thermopower) - free carrier response � Drude weight, optical conductivity different story: perpendicular • conclusions transport studied by Okamoto and Freericks, Zlatic, Shvaika... transport in multilayered nanostructures J. Freericks 7
modeling Hvar, 2008 8
geometry 3 dimensional model: band insulator Mott insulator band insulator two situations: (SrTiO 3 ; Ti-3 d 0 ) (LaTiO 3 ; Ti-3 d 1 ) (SrTiO 3 ; Ti-3 d 0 ) (i) quantum well BI MI BI BI quantum well BI M ν 3 2 1 electronic sites: cubic lattice BI MI BI (Ti sites) N (ii) superlattice structure counterions (Sr 2+ vs. La 3+ ) x,y BI BI BI BI N z N M M N N 9
electron-ion interaction single-orbital model E C nearest neighbor hopping � V i = − � � � r i − r ion � i j Extended single-orbital Hubbard model: n i + 1 n j + 1 � � � � � � � ˆ c † W ion H = − t ˆ i σ ˆ c j σ + h . c . + U n i ↑ ˆ ˆ n i ↓ + V i ˆ n i W ij ˆ ˆ ij 2 2 � ij � σ i i i � = j i � = j on-site (long range) electron- (long range) ion- repulsion electron interaction ion interaction E C E C W ij = W ion | r i − r j | = ij � � � r ion − r ion � i j parameters at T = 0: BI MI BI studied in the current context by: BI BI M • hopping • Okamoto and Millis t • Lee and MacDonald • on-site U r = U − E C ≥ 0 • Kancharla and Dagotto E C = e 2 • long-range • Freericks et al. � a • geometry: x,y � MI: N � BI: N z M 10
KR-slave-bosons and heterostructures effective 1D Schrödinger equation: � z 2 � � l ε k + λ l ψ k ν ( l ) − t z l z l + γ ψ k ν ( l + γ ) = E k ν ψ k ν ( l ) . γ = ± 1 hopping renormalization subband index Lagrange multiplier non-interacting in- layer index in-plane momentum plane dispersion KR-slave-boson mean-field theory provides a way to find the local (low-energy) self-energy i) layer-resolved hopping renormalization: � � (1 − n l + d 2 l )( n l − 2 d 2 n l − 2 d 2 l ) + d l l z l = z l ( n l , d l ) = � n l (1 − n l / 2) (amplitude of) electronic density double occupancy ii) free energy density: 2 2 2 + 1 2 + 1 � � 1 + e − β E k ν ( n,d, λ ) � 1 + e − β E k ν ( n,d, λ ) � � � � � � � � � f ( n, d, λ ) = − f ( n, d, λ ) = − log log + U r + U r ( λ l − V l ) n l ( λ l − V l ) n l d l d l n l W ll ′ n l ′ − n l W ll ′ n l ′ − 2 2 β N || β N || k ν k ν l l ll ′ ll ′ l l iii) saddle-point equations: maximize with respect to λ λ minimize with respect to n, d n, d Gutzwiller, PRL (1963) Kotliar, Ruckenstein, PRL (1986) 11 Brinkmann, Rice, PRB (1970) AR, Pilgram, Sigrist, PRB (2007)
typical solution N = M = 10 , U r = 22 t, E c = 0 . 8 t ( T = 0) 1 BI BI BI charge density n l 0.5 � � � t E C /t λ TF ∝ a MI MI MI MI E C 0 20 40 60 80 10 M N single-particle 5 λ l potential 0 20 40 60 80 0.2 double occupancy 0.1 d l (amplitude) 0 U r /t 20 40 60 80 l 12
(coherent) charge density Mott regime layer-resolved spectral density: ) *+,- U r = 23 t ! A ( ω ) *+,- n .,-/ n U = 16 t .,-/ "$( metallic interfaces "$' n coh 0 ω n, A ( ω ) "$& n coh "$% n coh " 0 ω ) ! !" ! # " # !" (two-site) DMFT data courteously l taken from Okamoto and Millis (2004) Okamoto and Millis, PRB (2004) 13 AR, Pilgram, Sigrist, PRB (2007)
“electronic structure” Hvar, 2008 14
quantum well subband dispersion ν 3 � z 2 � � l ε k + λ l ψ k ν ( l ) − t z l z l + γ ψ k ν ( l + γ ) = E k ν ψ k ν ( l ) 2 1 γ = ± 1 BI MI BI partially filled subbands % N = 8 $ U r = 24 t ! E C = 0 . 8 t E k ν /t " # ! " ν = 1 , 2 ! ! ! $ ! ! ! " # " ! ε k /t * Ueda, Rice, PRL (1985) 15 AR, Pilgram, Sigrist, PRB (2007)
envelope wave functions � z 2 � � l ε k + λ l ψ k ν ( l ) − t z l z l + γ ψ k ν ( l + γ ) = E k ν ψ k ν ( l ) γ = ± 1 effective potential square of envelope wave function $% % &% double well ε k /t = - 4 "% ! &% l - 1) ε k ] /t ! $% '% [ λ l + ( z 2 $% single quantum well &% "% N = 10 U r = 14 t ! &% ε k /t = 4 ! $% % ! !" ! # " # !" l
quantum well subband dispersion ν 3 � z 2 � � l ε k + λ l ψ k ν ( l ) − t z l z l + γ ψ k ν ( l + γ ) = E k ν ψ k ν ( l ) 2 1 γ = ± 1 BI MI BI partially filled subbands % N = 8 $ “band insulator” hybridization of almost U r = 24 t ! localized (correlated) and itinerant degrees E C = 0 . 8 t E k ν /t interface " of freedom # reminiscent of heavy- “Mott insulator” ! " fermion systems * ν = 1 , 2 ! ! ! $ high thermopower? ! ! ! " # " ! ε k /t * Ueda, Rice, PRL (1985) 17 AR, Pilgram, Sigrist, PRB (2007)
quantum well renormalization ν 3 � z 2 � � l ε k + λ l ψ k ν ( l ) − t z l z l + γ ψ k ν ( l + γ ) = E k ν ψ k ν ( l ) . 2 1 γ = ± 1 BI MI BI ! quasi-particle weight: N = 8 “band insulator” U r = 24 t � Z ν = ∂ E ν k � � ∂ε k Z ν &'# � FS “Mott insulator” suppressed in “Mott insulator” & ! " # $ % !! !" ν particle-hole asymmetry: ) interface ∂ 2 E ν k �� � � � ∂ E ν k � / α ν = ε k ( � ∂ε 2 ∂ε k α ν � k FS & enhanced at interface! ! ( ! " # $ % !! !" ν subbands 18
thermoelectric effects Hvar, 2008 19
Recommend
More recommend