robust initialization of differential algebraic equations
play

Robust Initialization of Differential Algebraic Equations EOOLT'07 - PowerPoint PPT Presentation

Robust Initialization of Differential Algebraic Equations EOOLT'07 Berlin Peter Aronsson Peter Fritzson Bernhard Bachmann MathCore Engineering AB Linkping University Fachhochschule Bielefeld Linkping Linkping Bielefeld Outline


  1. Robust Initialization of Differential Algebraic Equations EOOLT'07 Berlin Peter Aronsson Peter Fritzson Bernhard Bachmann MathCore Engineering AB Linköping University Fachhochschule Bielefeld Linköping Linköping Bielefeld

  2. Outline � Mathematical Formulation of Hybrid DAEs � Symbolic Transformation Steps � Initialization in Modelica (Conventional) � Higher-Index DAEs � System versus Component initialization � Example (3-Phase System) 2007-07-30 Robust Initialization of 2 Differential Algebraic Equations B. Bachmann, P. Aronsson, P. Fritzson

  3. Mathematical Formalism General representation of hybrid DAEs: ( ) � = 0 f t x t , ( ), ( ), ( ), ( ), ( ), x t y t u t q t q ( ), ( ), t c t p e pre e e t time � x t ( ) vector of differentiated state variables x t ( ) vector of state variables y t ( ) vector of algebraic variables ( ) vector of input variables u t ( ), ( ) vectors of discrete variables q t q t e pre e c t ( ) vector of condition expressions e p vector of parameters and/or constants 2007-07-30 Robust Initialization of 3 Differential Algebraic Equations B. Bachmann, P. Aronsson, P. Fritzson

  4. Numerical Aspects for Simulation (Explicit Euler Method) Integration of explicit ordinary differential equations (ODEs): ( ) � = = ( ) , ( ), ( ), , ( ) x t f t x t u t p x t x 0 0 Numerical approximation of the derivative Calculating an and/or right-hand-side: approximation of − x t ( ) x t ( ) ( ) x ( t n+ 1 ) based on the � + n 1 n ≈ ≈ ( ) , ( ), ( ), x t f t x t u t p n n n n − t t values of x ( t n ) + n 1 n Iteration scheme: Here: Explicit Euler ( ) ( ) ≈ + − ⋅ ( ) ( ) , ( ), ( ), x t x t t t f t x t u t p integration method + + n 1 n n 1 n n n n Convergence? 2007-07-30 Robust Initialization of 4 Differential Algebraic Equations B. Bachmann, P. Aronsson, P. Fritzson

  5. Basic Transformation Steps Mathematical View Transformation to explicit state-space representation: ⎛ � ⎞ x t ( ) ( ) ( ) ⎜ ⎟ = = � z t ( ) g t x t u t , ( ), ( ), p = 0 f t x t , ( ), ( ), ( ), ( ), x t y t u t p y t ( ) ⎝ ⎠ ⎛ � ⎞ x t ( ) ( ) ( ) � = ⎜ = ⎟ = x t ( ) h t x t u t , ( ), ( ), p 0 f t z t , ( ), ( ), ( ), x t u t p , ( ) z t y t ( ) ⎝ ⎠ ( ) = y t ( ) k t x t u t , ( ), ( ), p Implicit function theorem: Necessary condition for the existence of the transformation is that the following matrix is regular at the point of interest: ⎛ ∂ ⎞ ≠ ( ) det ⎜ , ( ), ( ), ( ), ⎟ 0 f t z t x t u t p ⎝ ⎠ ∂ z 2007-07-30 Robust Initialization of 5 Differential Algebraic Equations B. Bachmann, P. Aronsson, P. Fritzson

  6. Symbolic Transformation Algorithmic Steps ( ) � = 0 f t x t , ( ), ( ), ( ), ( ), x t y t u t p � Construct bipartite graph representation – Structural representation of the equation system ⎛ � ⎞ x t ( ) ( ) = ⎜ ⎟ � Solve the matching problem = 0 f t z t , ( ), ( ), ( ), x t u t p , ( ) z t y t ( ) ⎝ ⎠ – Assign to each variable exact one equation – Same number of equations and unknowns ⎛ � ⎞ x t ( ) ( ) ⎜ ⎟ = = z t ( ) g t x t u t , ( ), ( ), p � Construct a directed graph y t ( ) ⎝ ⎠ – Find sinks, sources and strong components – Sorting the equation system ( ) � = x t ( ) h t x t u t , ( ), ( ), p ( ) = y t ( ) k t x t u t , ( ), ( ), p 2007-07-30 Robust Initialization of 6 Differential Algebraic Equations B. Bachmann, P. Aronsson, P. Fritzson

  7. Initialization of Dynamic Models Conventional � ( ) Initialization of “free” state variables � = 0 f t x t , ( ), ( ), ( ), ( ), x t y t u t p – Transformed DAE after index-reduction – States can be chosen at start time • same number of additional equations ⎛ � ⎞ x t ( ) and “free” states ( ) = ⎜ ⎟ = 0 f t z t , ( ), ( ), ( ), x t u t p , ( ) z t � y t ( ) Initialization of parameters ⎝ ⎠ – Determine parameter settings – Parameters can be calculated at start time ⎛ � ⎞ x t ( ) ( ) ⎜ ⎟ • same number of additional equations = = z t ( ) g t x t u t , ( ), ( ), p y t ( ) ⎝ ⎠ and “free” parameters � Initialization mechanism in Modelica – attribute start – initial equation section ( ) � = x t ( ) h t x t u t , ( ), ( ), p • attribute fixed for parameters ( ) = y t ( ) k t x t u t , ( ), ( ), p 2007-07-30 Robust Initialization of 7 Differential Algebraic Equations B. Bachmann, P. Aronsson, P. Fritzson

  8. Example: 3-Phase Electrical System Steady-state initialization? - States I1.i, I2.i, I3.i are not constant! - Here: Initial values set to 0 (standard settings, attribute start ) - Transformation to rotating reference system necessary 2007-07-30 Robust Initialization of 8 Differential Algebraic Equations B. Bachmann, P. Aronsson, P. Fritzson

  9. Example: 3-Phase Electrical System Park-Transformation to rotating reference system: - Write states as vector i_abc[3] = {I1.i, I2.i, I3.i} - Park-transformation to dq0-reference frame ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ π π 2 4 ( ) ω ω + ω + ⎜ ⎜ ⎟ ⎜ ⎟ ⎟ sin t sin t sin t ⎝ ⎠ ⎝ ⎠ 3 3 ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎛ ⎞ ⎛ ⎞ π π 2 2 4 ( ) ⎜ ⎟ = ω ω + ω + ⎜ ⎟ ⎜ ⎟ P cos t cos t cos t ⎝ ⎠ ⎝ ⎠ ⎜ 3 3 ⎟ 3 ⎜ ⎟ ⎜ ⎟ 1 1 1 ⎜ ⎟ ⎜ 2 2 2 ⎟ ⎝ ⎠ = ⋅ i _ dq 0 P i _ abc 2007-07-30 Robust Initialization of 9 Differential Algebraic Equations B. Bachmann, P. Aronsson, P. Fritzson

  10. Example: 3-Phase Electrical System Initialize States model Test3PhaseSystem parameter Real shift=0.4; Real i_abc[3]={I1.i,I2.i,I3.i}; Real i_dq0[3]; … initial equation der (i_dq0)={0,0,0}; equation … i_dq0 = P*i_abc; end Test3PhaseSystem Steady-state initialization: - Derivatives of i_dq0 are only introduced during initialization - Differentiation of i_dq0 = P*i_abc necessary - No higher-index problem 2007-07-30 Robust Initialization of 10 Differential Algebraic Equations B. Bachmann, P. Aronsson, P. Fritzson

  11. Example: 3-Phase Electrical System Initialize Parameters model Test3PhaseSystem parameter Real shift(fixed=false,start=0.1); Real i_abc[3]={I1.i,I2.i,I3.i}, u_abc[3]={S1.v,S2.v,S3.v}; … initial equation der (i_dq0)={0,0,0}; power = -0.12865; equation … u_dq0 = P*u_abc; i_dq0 = P*i_abc; power = u_dq0*i_dq0; end Test3PhaseSystem Parameter initialization: - Non-linear equation, no unique solution power=u_dq0*i_dq0=-0.12865 - Attribute fixed (default true) - Attribute start ( default 0) 2007-07-30 Robust Initialization of 11 Differential Algebraic Equations B. Bachmann, P. Aronsson, P. Fritzson

  12. Example: 3-Phase Electrical System Hierarchical Definition model LR … Real i_abc[3]={I1.i,I2.i,I3.i} Real i_dq0[3]=P*i_abc; initial equation der (i_dq0)={0,0,0}; equation … end LR Define new LR – Component: - States are LR1.I1.i, LR1.I2.i, LR1.I3.i - Connectors based on rotating reference system - Initial equations defined locally - no higher-index problem 2007-07-30 Robust Initialization of 12 Differential Algebraic Equations B. Bachmann, P. Aronsson, P. Fritzson

  13. Higher-Index-DAEs General representation of DAEs: ( ) � = 0 f t , ( ), ( ), ( ), ( ), x t x t y t u t p t time � x t ( ) vector of differentiated state variables x t ( ) vector of state variables y t ( ) vector of algebraic variables u t ( ) vector of input variables v ector of parameters and/or constants p Differential index of a DAE: The minimal number of analytical differentiations of the equation system necessary to extract by algebraic manipulations an explicit ODE for all unknowns. 2007-07-30 Robust Initialization of 13 Differential Algebraic Equations B. Bachmann, P. Aronsson, P. Fritzson

  14. Higher-Index-DAEs DAE with differential index 0: ( ) ( ) � � = 0 , ( ), ( ), ( ), = f t x t x t u t p x t ( ) g t x t u t , ( ), ( ), p DAE with differential index 1: ( ) � = 0 , ( ), ( ), ( ), ( ), f t x t x t y t u t p ( ) � = ( ) x t ( ) h t x t u t , ( ), ( ), p � = x t ( ) h t x t u t , ( ), ( ), p d ( ) ( ) � = = y t ( ) k t x t u t , ( ), ( ), p y t ( ) k t x t u t , ( ), ( ), p dt 2007-07-30 Robust Initialization of 14 Differential Algebraic Equations B. Bachmann, P. Aronsson, P. Fritzson

  15. Higher Index Problems Structurally Singular Systems � Higher-index DAEs ( ) � = 0 f t x t , ( ), ( ), ( ), ( ), x t y t u t p – Differential index of a DAE – Structural singularity of the adjacence matrix – Index reduction method using symbolic ⎛ � ⎞ x t ( ) ( ) = ⎜ ⎟ differentiation of equations = 0 f t z t , ( ), ( ), ( ), x t u t p , ( ) z t y t ( ) ⎝ ⎠ � Numerical issues ⎛ � ⎞ x t ( ) – Consistent initialization ( ) ⎜ ⎟ = = z t ( ) g t x t u t , ( ), ( ), p y t ( ) ⎝ ⎠ – Drift phenomenon – Dummy derivative method � State selection mechanism in Modelica ( ) � = x t ( ) h t x t u t , ( ), ( ), p – Attribute StateSelect: ( ) = never, avoid, default, prefer, always y t ( ) k t x t u t , ( ), ( ), p 2007-07-30 Robust Initialization of 15 Differential Algebraic Equations B. Bachmann, P. Aronsson, P. Fritzson

Recommend


More recommend