resummation in pdf fj ts
play

Resummation in PDF fj ts Luca Rottoli Rudolf Peierls Centre for - PowerPoint PPT Presentation

Resummation in PDF fj ts Luca Rottoli Rudolf Peierls Centre for Theoretical Physics, University of Oxford LHC, New Physics, and the pursuit of Precision LHC as a discovery machine Higgs Boson 10 1 BSM particles (never as of


  1. Resummation in PDF fj ts Luca Rottoli Rudolf Peierls Centre for Theoretical Physics, University of Oxford

  2. LHC, New Physics, and the pursuit of Precision LHC as a discovery machine ‣ Higgs Boson ✓ 10 1 𐄃 ‣ BSM particles (never as of today) RadISH 2.0 10 0 8 TeV, pp → Z ( → l + l − ) + X 0.0 < η < 2.4, 66 < m ll < 116 GeV Focus in LHC run II NNPDF3.0 (NNLO) (1 / σ ) d σ /dp T 10 − 1 uncertainties with µ R , µ F , Q variations ‣ Measurement of the Standard Model parameters with very Fixed Order from arXiv:1610.01843 high precision 10 − 2 ‣ Signals of New Physics beyond the Standard Model NNLO 10 − 3 NNLO+NNLL NNLO+N 3 LL A theorist’s Quest: Data 10 − 4 ‣ New BSM scenarios to be tested 1 . 20 1 . 15 1 . 10 ‣ New techniques to enhance signal/background ratio and 1 . 05 1 . 00 0 . 95 isolate tiny deviations from SM predictions 0 . 90 0 . 85 ‣ Development of accurate and precise theoretical predictions 0 . 80 10 1 10 2 p T Goal: 1% accuracy in theoretical predictions [Bizon,Monni,Re,LR,Torielli et al, in preparation] 1 Università di Cagliari, November 22, 2017

  3. LHC, New Physics, and the pursuit of Precision Large HADRON Collider A crucial ingredient in the physics precision programme at the LHC is the accurate understanding of the internal structure of the initial state hadrons 2 Università di Cagliari, November 22, 2017

  4. Factorization X ˆ σ ab → X b a proton proton Proton’s dynamics occurs on a timescale ~ 1fm Production of a heavy particle e.g. Higgs Production ( hard process ) occurs on timescale 1/M X ~ 1/100 GeV ~ 0.002 fm Large separation between scales allows to separate the hard process and treat it independently from the hadronic dynamics: collinear factorization 3 Università di Cagliari, November 22, 2017

  5. Factorization X √ centre-of-mass energy s hard scale of the process Q ˆ σ ab → X b a h 2 h 1 Z σ ( s , Q 2 ) = ∑ dx 1 dx 2 f a / h 1 ( x 1 , Q 2 ) f b / h 2 ( x 2 , Q 2 ) ˆ σ ab → X ( Q 2 , x 1 x 2 s ) X a , b 4 Università di Cagliari, November 22, 2017

  6. Factorization X √ centre-of-mass energy s hard scale of the process Q ˆ σ ab → X b a h 2 h 1 Z σ ( s , Q 2 ) = ∑ dx 1 dx 2 f a / h 1 ( x 1 , Q 2 ) f b / h 2 ( x 2 , Q 2 ) ˆ σ ab → X ( Q 2 , x 1 x 2 s ) X a , b σ X ( Q 2 , s ) = ∑ f a / h 1 ( Q 2 ) ⊗ f b / h 2 ( Q 2 ) ⊗ ˆ σ ab → X ( Q 2 , s ) a , b 4 Università di Cagliari, November 22, 2017

  7. Factorization X √ centre-of-mass energy s hard scale of the process Q ˆ σ ab → X b a h 2 h 1 Z σ ( s , Q 2 ) = ∑ dx 1 dx 2 f a / h 1 ( x 1 , Q 2 ) f b / h 2 ( x 2 , Q 2 ) ˆ σ ab → X ( Q 2 , x 1 x 2 s ) X a , b partonic cross-section short-distance: perturbative 5 Università di Cagliari, November 22, 2017

  8. Factorization X √ centre-of-mass energy s hard scale of the process Q ˆ σ ab → X b a h 2 h 1 Z σ ( s , Q 2 ) = ∑ dx 1 dx 2 f a / h 1 ( x 1 , Q 2 ) f b / h 2 ( x 2 , Q 2 ) ˆ σ ab → X ( Q 2 , x 1 x 2 s ) X a , b partonic cross-section short-distance: perturbative QCD at short distance is perturbative ( asymptotic freedom ) σ = ˆ σ 0 ( 1 + . . . ) ˆ LO 5 Università di Cagliari, November 22, 2017

  9. Factorization X √ centre-of-mass energy s hard scale of the process Q ˆ σ ab → X b a h 2 h 1 Z σ ( s , Q 2 ) = ∑ dx 1 dx 2 f a / h 1 ( x 1 , Q 2 ) f b / h 2 ( x 2 , Q 2 ) ˆ σ ab → X ( Q 2 , x 1 x 2 s ) X a , b partonic cross-section short-distance: perturbative QCD at short distance is perturbative ( asymptotic freedom ) σ 0 ( 1 + α s c 1 + α 2 σ = ˆ s c 2 + . . . ) ˆ NLO 5 Università di Cagliari, November 22, 2017

  10. Factorization X √ centre-of-mass energy s hard scale of the process Q ˆ σ ab → X b a h 2 h 1 Z σ ( s , Q 2 ) = ∑ dx 1 dx 2 f a / h 1 ( x 1 , Q 2 ) f b / h 2 ( x 2 , Q 2 ) ˆ σ ab → X ( Q 2 , x 1 x 2 s ) X a , b partonic cross-section short-distance: perturbative QCD at short distance is perturbative ( asymptotic freedom ) σ 0 ( 1 + α s c 1 + α 2 σ = ˆ s c 2 + . . . ) ˆ NNLO 5 Università di Cagliari, November 22, 2017

  11. Factorization X √ centre-of-mass energy s hard scale of the process Q ˆ σ ab → X b a h 2 h 1 Z σ ( s , Q 2 ) = ∑ dx 1 dx 2 f a / h 1 ( x 1 , Q 2 ) f b / h 2 ( x 2 , Q 2 ) ˆ σ ab → X ( Q 2 , x 1 x 2 s ) X a , b Parton Distribution Functions (PDFs) long-distance: non-perturbative Parton distribution functions (PDFs) are universal objects which encode information on the substructure of the proton and which describe the dynamics of quarks and gluons ( partons ) PDFs are currently extracted from experiments 6 Università di Cagliari, November 22, 2017

  12. Parton Distribution Functions f ( x , Q 2 ) PDFs depend on two kinematic variables fraction of the momentum of the proton 7 Università di Cagliari, November 22, 2017

  13. Parton Distribution Functions f ( x , Q 2 ) PDFs depend on two kinematic variables Scale of the process 7 Università di Cagliari, November 22, 2017

  14. Parton Distribution Functions f ( x , Q 2 ) PDFs depend on two kinematic variables and are parametrized at an initial scale Q 0 7 Università di Cagliari, November 22, 2017

  15. Parton Distribution Functions f ( x , Q 2 ) PDFs depend on two kinematic variables and are parametrized at an initial scale Q 0 10 7 Evolution in Q 2 is encoded in DGLAP equation 10 6 ⇣ x Z 1 ∂ dz ⌘ Q 2 ∂ Q 2 f i ( x , Q 2 ) = z , α s ( Q 2 ) f j ( z , Q 2 ) z P ij 10 4 x Q 2 [GeV] 10 3 10 2 10 1 1 10 -6 10 -5 10 -4 10 -3 10 -2 10 -1 1 x 7 Università di Cagliari, November 22, 2017

  16. Parton Distribution Functions f ( x , Q 2 ) PDFs depend on two kinematic variables 10 7 Evolution in Q 2 is encoded in DGLAP equation 10 6 ⇣ x Z 1 ∂ dz ⌘ Q 2 ∂ Q 2 f i ( x , Q 2 ) = z , α s ( Q 2 ) f j ( z , Q 2 ) z P ij 10 4 x Q 2 [GeV] splitting functions 10 3 10 2 10 1 1 10 -6 10 -5 10 -4 10 -3 10 -2 10 -1 1 x 7 Università di Cagliari, November 22, 2017

  17. Parton Distribution Functions f ( x , Q 2 ) PDFs depend on two kinematic variables 10 7 Evolution in Q 2 is encoded in DGLAP equation 10 6 ⇣ x Z 1 ∂ dz ⌘ Q 2 ∂ Q 2 f i ( x , Q 2 ) = z , α s ( Q 2 ) f j ( z , Q 2 ) z P ij 10 4 x Q 2 [GeV] splitting functions 10 3 10 2 ⇣ ⌘ = P ( 0 ) ij ( x ) + α s P ( 1 ) s P ( 2 ) x , α s ( Q 2 ) ij ( x ) + α 2 ij ( x ) + . . . P ij 10 1 1 10 -6 10 -5 10 -4 10 -3 10 -2 10 -1 1 x 7 Università di Cagliari, November 22, 2017

  18. DGLAP equation ⇣ x Z 1 ∂ dz ⌘ Q 2 ∂ Q 2 f i ( x , Q 2 ) = z , α s ( Q 2 ) f j ( z , Q 2 ) z P ij x 2n f + 1 coupled di ff erential equation number of (active) fm avours However, strong interactions do not tell apart quarks and antiquarks ( charge conjugation and SU(n f ) fm avour symmetry ) P q i q j = P ¯ P q i ¯ q j = P ¯ P q i g = P ¯ q i g ≡ P qg , P gq i = P g ¯ q i ≡ P gq q j , q i q j , q i ¯ Σ ( x , Q 2 ) = ∑ [ q i ( x , t ) + ¯ q i ( x , t )] Only singlet combination couples to gluon i ✓ ◆ ✓ ◆ ✓ ◆ ∂ Σ P qq P qg Σ Q 2 ⊗ = ∂ ln Q 2 g P gq P gg g 8 Università di Cagliari, November 22, 2017

  19. DGLAP equation Q 2 = 10 GeV 2 Q 2 = 10 4 GeV 2 1 1 NNPDF3.1 (NNLO) g/10 0.9 0.9 2 4 2 2 2 xf(x, =10 GeV ) xf(x, =10 GeV ) µ µ s 0.8 0.8 g/10 0.7 0.7 d Q 2 evolution 0.6 0.6 u v c 0.5 0.5 u v 0.4 0.4 u d v b s 0.3 0.3 d v 0.2 0.2 d u 0.1 0.1 c 0 0 3 3 − − 2 1 2 1 − − − − 10 10 10 10 10 10 1 1 x x growth of small- x gluon Parton lose momentum and shifts at smaller values of x 9 Università di Cagliari, November 22, 2017

  20. Parton Distribution Function Fits σ X ( Q 2 , s ) = ∑ f a / h 1 ( Q 2 ) ⊗ f b / h 2 ( Q 2 ) ⊗ ˆ σ ab → X ( Q 2 , s ) a , b d Q 2 dQ 2 f i ( Q 2 ) = P ij ( α s ( Q 2 )) ⊗ f j ( Q 2 ) theoretical input theoretical prediction (to be compared with data) 10 Università di Cagliari, November 22, 2017

  21. Parton Distribution Function Fits σ X ( Q 2 , s ) = ∑ f a / h 1 ( Q 2 ) ⊗ f b / h 2 ( Q 2 ) ⊗ ˆ σ ab → X ( Q 2 , s ) a , b d Q 2 dQ 2 f i ( Q 2 ) = P ij ( α s ( Q 2 )) ⊗ f j ( Q 2 ) theoretical input theoretical prediction (to be compared with data) PDF fj ts are typically based on fj xed-order theory… σ 0 ( 1 + α s c 1 + α 2 σ = ˆ s c 2 + . . . ) ˆ ⇣ ⌘ = P ( 0 ) ij ( x ) + α s P ( 1 ) s P ( 2 ) x , α s ( Q 2 ) ij ( x ) + α 2 ij ( x ) + . . . P ij …but is fj xed-order theory always good enough? 10 Università di Cagliari, November 22, 2017

  22. Large logarithms Single (double) logarithmic enhancement s ln j α k 0 ≤ j ≤ ( 2 ) k Perturbative convergence is spoiled when Finite in the limit x → 0 α s ln ( 2 ) ∼ 1 e.g. small- x behaviour of splitting functions " # ∞ n ⇣ α s ⌘ n m − 1 ln m − 1 1 A ( n ) P ( n ) ( x ) x + x ¯ ∑ ∑ xP ( x , α s ) = 2 π n = 0 m = 1 Instability at small- x 11 Università di Cagliari, November 22, 2017

  23. Large logarithms Single (double) logarithmic enhancement s ln j α k 0 ≤ j ≤ ( 2 ) k Perturbative convergence is spoiled when Finite in the limit x → 0 α s ln ( 2 ) ∼ 1 e.g. small- x behaviour of splitting functions " # ∞ n ⇣ α s ⌘ n m − 1 ln m − 1 1 A ( n ) P ( n ) ( x ) x + x ¯ ∑ ∑ xP ( x , α s ) = 2 π n = 0 m = 1 Instability at small- x All-order resummation of the logarithmically enhanced terms (n ≥ 0, m=n) leading-logarithm (LL x), (n ≥ 0, m=n,n-1) next-to-leading-logarithm (NLL x ), etc. 12 Università di Cagliari, November 22, 2017

Recommend


More recommend