resource allocation in underprovisioned multioverlay live
play

Resource Allocation in Underprovisioned Multioverlay Live Video - PowerPoint PPT Presentation

Resource Allocation in Underprovisioned Multioverlay Live Video Sharing Services Jiayi Liu 1 , Shakeel Ahmad 2 , Eliya Buyukkaya 1 , Raouf Hamzaoui 2 and Gwendal Simon 1 1 Telecom Bretagne 2 De Montfort University MMOG player video casting tool


  1. Resource Allocation in Underprovisioned Multioverlay Live Video Sharing Services Jiayi Liu 1 , Shakeel Ahmad 2 , Eliya Buyukkaya 1 , Raouf Hamzaoui 2 and Gwendal Simon 1 1 Telecom Bretagne 2 De Montfort University

  2. MMOG player video casting tool Massively Multiplayer Online Game collaborative tool 2 / 20 Jiayi Liu Multioverlay Bandwidth Allocation

  3. MMOG player video casting tool Massively Multiplayer Online Game collaborative tool MMOG player video casting tool Players emit user-generated videos Developed by the CNG (Community Network Game) project Integrated in "The Missing Ink" (www.missing-ink.com) 2 / 20 Jiayi Liu Multioverlay Bandwidth Allocation

  4. Xfire : online game player video casting platform 3 / 20 Jiayi Liu Multioverlay Bandwidth Allocation

  5. Challenges Thousands of simultaneous video sources 4 / 20 Jiayi Liu Multioverlay Bandwidth Allocation

  6. Challenges Thousands of simultaneous video sources Each video is seen by a dozen of players 4 / 20 Jiayi Liu Multioverlay Bandwidth Allocation

  7. Challenges Thousands of simultaneous video sources Each video is seen by a dozen of players Video sources are low-capacity computers 4 / 20 Jiayi Liu Multioverlay Bandwidth Allocation

  8. Challenges Thousands of simultaneous video sources Each video is seen by a dozen of players Video sources are low-capacity computers CDN is not cost-effective 4 / 20 Jiayi Liu Multioverlay Bandwidth Allocation

  9. Challenges Thousands of simultaneous video sources Each video is seen by a dozen of players Video sources are low-capacity computers CDN is not cost-effective → peer-to-peer may be useful Solution : multioverlay P2P video streaming system 4 / 20 Jiayi Liu Multioverlay Bandwidth Allocation

  10. Avancement Multioverlay P2P video streaming system 1 Inter-overlay bandwidth allocation problem 2 Performance evaluation 3 Conclusion 4 5 / 20 Jiayi Liu Multioverlay Bandwidth Allocation

  11. System in a Nutshell Management Server s 1 s 2 s 3 p 2 p 1 p 2 p 1 p 2 A player can simultaneously watch several videos 6 / 20 Jiayi Liu Multioverlay Bandwidth Allocation

  12. System design points Intra-overlay P2P video streaming : Mesh-based : bandwidth fluctuation and peer dynamics 7 / 20 Jiayi Liu Multioverlay Bandwidth Allocation

  13. System design points Intra-overlay P2P video streaming : Mesh-based : bandwidth fluctuation and peer dynamics Inter-overlay bandwidth allocation : Peers allocate their uplink bandwidth Independent with intra-overlay video streaming 7 / 20 Jiayi Liu Multioverlay Bandwidth Allocation

  14. Avancement Multioverlay P2P video streaming system 1 Inter-overlay bandwidth allocation problem 2 Performance evaluation 3 Conclusion 4 8 / 20 Jiayi Liu Multioverlay Bandwidth Allocation

  15. Bandwidth Allocation Problem Peers watching several videos should share their uplink Problem : How to allocate bandwidth to overlays ? 9 / 20 Jiayi Liu Multioverlay Bandwidth Allocation

  16. Bandwidth Allocation Problem Peers watching several videos should share their uplink Problem : How to allocate bandwidth to overlays ? overlay 1 overlay 2 overlay 3 p 1 p 2 p 3 p 4 uplink : 9 uplink : 5 uplink : 8 uplink : 8 9 / 20 Jiayi Liu Multioverlay Bandwidth Allocation

  17. Bandwidth Allocation Problem Peers watching several videos should share their uplink Problem : How to allocate bandwidth to overlays ? overlay 1 overlay 2 overlay 3 p 1 p 2 p 3 p 4 uplink : 9 uplink : 5 uplink : 8 uplink : 8 peer subscribes to overlay 9 / 20 Jiayi Liu Multioverlay Bandwidth Allocation

  18. Bandwidth Allocation Problem Peers watching several videos should share their uplink Problem : How to allocate bandwidth to overlays ? demand : 18 demand : 12 demand : 18 capacity : 6 capacity : 4 capacity : 8 overlay 1 overlay 2 overlay 3 p 1 p 2 p 3 p 4 uplink : 9 uplink : 5 uplink : 8 uplink : 8 9 / 20 Jiayi Liu Multioverlay Bandwidth Allocation

  19. Bandwidth Allocation Problem Peers watching several videos should share their uplink Problem : How to allocate bandwidth to overlays ? demand : 18 demand : 12 demand : 18 capacity : 12 capacity : 7 capacity : 8 overlay 1 overlay 2 overlay 3 6 3 p 1 p 2 p 3 p 4 uplink : 9 uplink : 5 uplink : 8 uplink : 8 6 peer allocates to overlay 9 / 20 Jiayi Liu Multioverlay Bandwidth Allocation

  20. Bandwidth Allocation Problem Peers watching several videos should share their uplink Problem : How to allocate bandwidth to overlays ? demand : 18 demand : 12 demand : 18 capacity : 18 capacity : 8 capacity : 22 overlay 1 overlay 2 overlay 3 8 6 2 1 4 3 2 4 p 1 p 2 p 3 p 4 uplink : 9 uplink : 5 uplink : 8 uplink : 8 9 / 20 Jiayi Liu Multioverlay Bandwidth Allocation

  21. Objective 1 : minimizing the waste of resources Overlay provisioning : overlay capacity - overlay demand overlay capacity - overlay demand ≥ 0 : overprovisioned overlay ( G + ) overlay capacity - overlay demand < 0 : underprovisioned overlay ( G − ) 10 / 20 Jiayi Liu Multioverlay Bandwidth Allocation

  22. Objective 1 : minimizing the waste of resources Overlay provisioning : overlay capacity - overlay demand overlay capacity - overlay demand ≥ 0 : overprovisioned overlay ( G + ) overlay capacity - overlay demand < 0 : underprovisioned overlay ( G − ) Objective : minimizing total underprovisioning overlay ∈ G − | capacity − demand | � 10 / 20 Jiayi Liu Multioverlay Bandwidth Allocation

  23. Our solution : a max-flow demand : 18 demand : 12 demand : 18 capacity : 6 capacity : 4 capacity : 8 s 1 s 2 s 3 p 1 p 2 p 3 p 4 uplink : 9 uplink : 5 uplink : 8 uplink : 8 11 / 20 Jiayi Liu Multioverlay Bandwidth Allocation

  24. Our solution : a max-flow demand : 18 demand : 12 demand : 18 capacity : 6 capacity : 4 capacity : 8 s 1 s 2 s 3 p 1 p 2 p 3 p 4 0/9 0/5 0/8 0/8 f 11 / 20 Jiayi Liu Multioverlay Bandwidth Allocation

  25. Our solution : a max-flow q 0/12 0/8 0/10 s 1 s 2 s 3 p 1 p 2 p 3 p 4 0/9 0/5 0/8 0/8 f 11 / 20 Jiayi Liu Multioverlay Bandwidth Allocation

  26. Our solution : a max-flow q 12/12 8/8 10/10 s 1 s 2 s 3 8 5 1 4 2 4 0 6 p 1 p 2 p 3 p 4 9/9 5/5 8/8 8/8 f 11 / 20 Jiayi Liu Multioverlay Bandwidth Allocation

  27. Objective 2 : for underprovisioned system Underprovisioned system : p bandwidth < overlay required bandwidth � � 12 / 20 Jiayi Liu Multioverlay Bandwidth Allocation

  28. Objective 2 : for underprovisioned system Underprovisioned system : p bandwidth < overlay required bandwidth � � Given objective 1, how to share the resource deficit ? 12 / 20 Jiayi Liu Multioverlay Bandwidth Allocation

  29. Objective 2 : for underprovisioned system Underprovisioned system : p bandwidth < overlay required bandwidth � � Given objective 1, how to share the resource deficit ? popularity : the most popular sources first 12 / 20 Jiayi Liu Multioverlay Bandwidth Allocation

  30. Objective 2 : for underprovisioned system Underprovisioned system : p bandwidth < overlay required bandwidth � � Given objective 1, how to share the resource deficit ? popularity : the most popular sources first diversity : the largest number of sources 12 / 20 Jiayi Liu Multioverlay Bandwidth Allocation

  31. Objective 2 : for underprovisioned system Underprovisioned system : p bandwidth < overlay required bandwidth � � Given objective 1, how to share the resource deficit ? popularity : the most popular sources first diversity : the largest number of sources others : e.g. payment : the premium sources first 12 / 20 Jiayi Liu Multioverlay Bandwidth Allocation

  32. Our solution : a min-cost max-flow q 0/12 0/8 0/10 s 1 s 2 s 3 p 1 p 2 p 3 p 4 0/9 0/5 0/8 0/8 f 13 / 20 Jiayi Liu Multioverlay Bandwidth Allocation

  33. Our solution : a min-cost max-flow q 0/12 0/8 0/10 add a cost function s 1 s 2 s 3 popularity : 1 n , ∀ s p 1 p 2 p 3 p 4 0/9 0/5 0/8 0/8 f 13 / 20 Jiayi Liu Multioverlay Bandwidth Allocation

  34. Our solution : a min-cost max-flow q 0/12 0/8 0/10 add a cost function s 1 s 2 s 3 popularity : 1 n , ∀ s diversity : 1 − 1 n , ∀ s p 1 p 2 p 3 p 4 0/9 0/5 0/8 0/8 f 13 / 20 Jiayi Liu Multioverlay Bandwidth Allocation

  35. Our solution : a min-cost max-flow q 0/12 0/8 0/10 add a cost function s 1 s 2 s 3 popularity : 1 n , ∀ s diversity : 1 − 1 n , ∀ s payment : p 1 p 2 p 3 p 4  1 , if s is premium 0/9 0/5 0/8 0/8  2 , otherwise  f 13 / 20 Jiayi Liu Multioverlay Bandwidth Allocation

  36. Avancement Multioverlay P2P video streaming system 1 Inter-overlay bandwidth allocation problem 2 Performance evaluation 3 Conclusion 4 14 / 20 Jiayi Liu Multioverlay Bandwidth Allocation

  37. System practicability Peer dynamics Peers periodically report their estimated upload bandwidth Server periodically recomputes, and sends bandwidth allocation Light peer server communication overhead 0.8 Mbps server upload bandwidth : 100,000 peers, 1min period, 3 average watching overlays × 2 bytes 0.8 Mbps server download bandwidth : 100,000 peers, 1min period, 4 bytes bandwidth and 4 bytes peer ID. Min-cost-max-flow algorithm computation time nb. peers 1 , 000 5 , 000 10 , 000 50 , 000 100 , 000 time (sec) 0.005 0.086 0.311 7.455 31.887 15 / 20 Jiayi Liu Multioverlay Bandwidth Allocation

Recommend


More recommend