regge trajectories of strange resonances and the non
play

Regge trajectories of strange resonances and the non-ordinary nature - PowerPoint PPT Presentation

Regge trajectories of strange resonances and the non-ordinary nature of the A.Rodas, J.R.Pel aez Universidad Complutense de Madrid September 8, 2016 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .


  1. Regge trajectories of strange resonances and the non-ordinary nature of the κ A.Rodas, J.R.Pel´ aez Universidad Complutense de Madrid September 8, 2016 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.Rodas, J.R.Pel´ aez Regge trajectories of strange resonances 1 / 28

  2. Index Motivation and Introduction 1 Ordinary resonances 2 Non-ordinary resonances 3 Summary 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.Rodas, J.R.Pel´ aez Regge trajectories of strange resonances 1 / 28

  3. Motivation Interest in identification of non-ordinary Quark Model states. Easy if quantum numbers are not qqbar Not so easy for cryptoexotics like light scalars. Particularly the σ and κ -mesons existence and nature has been debated for several decades. Hard to tell what a non-ordinary resonance is. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.Rodas, J.R.Pel´ aez Regge trajectories of strange resonances 2 / 28

  4. Regge Theory Figure: Anisovich-Anisovich-Sarantsev-PhysRevD.62.05150 For ordinary resonances: All hadrons are classified in linear ( J , M 2 ) trayectories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.Rodas, J.R.Pel´ aez Regge trajectories of strange resonances 3 / 28

  5. Regge Theory σ and κ -mesons are not included in these plots. The σ -meson cannot be included because it has no possible partner in this classification. The κ resonance is not even mentioned as it still needs confirmation according to the PDG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.Rodas, J.R.Pel´ aez Regge trajectories of strange resonances 4 / 28

  6. Regge poles The contribution of a single pole to a partial wave is β ( s ) β ( s ) f ( J , s ) = f background + J − α ( s ) ≈ (1) J − α ( s ) α ( s ) is the position of the pole, whereas β ( s ) is the residue. Unitarity condition on the real axis implies Im α ( s ) = ρ ( s ) β ( s ) (2) The analytical properties of β ( s ) implies s α ( s ) ˆ β ( s ) = Γ( α ( s ) + 3 / 2) γ ( s ) (3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.Rodas, J.R.Pel´ aez Regge trajectories of strange resonances 5 / 28

  7. The trajectory and residue should satisfy these integral equations: ∫ ∞ Re α ( s ) = α 0 + α ′ s + s 4 m 2 ds ′ Im α ( s ′ ) s ′ ( s ′ − s ) , (4) π PV ( s α 0 + α ′ s Im α ( s ) = ρ ( s ) b 0 ˆ 2 ) | exp − α ′ s [1 − log( α ′ s 0 )] | Γ( α ( s ) + 3 ∫ ∞ ) ds ′ Im α ( s ′ ) log ˆ s α ( s ′ ) + 3 ( ) s ′ + arg Γ + s ˆ 2 , (5) π PV s ′ ( s ′ − s ) 4 m 2 ( s α 0 + α ′ s b 0 ˆ − α ′ s [1 − log( α ′ s 0 )] β ( s ) = 2 ) exp Γ( α ( s ) + 3 ∫ ∞ ds ′ Im α ( s ′ ) log ˆ α ( s ′ ) + 3 ) s ( ) s ′ + arg Γ + s ˆ 2 , (6) s ′ ( s ′ − s ) π 4 m 2 Constants fixed by forcing the amplitude to have THE POLE AND RESIDUE OF THE DESIRED RESONANCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.Rodas, J.R.Pel´ aez Regge trajectories of strange resonances 6 / 28

  8. ρ (770) resonance Figure: Garc´ ıa-Mart´ ın et al.-Phys.Rev. D83 (2011) 074004 Parameters obtained using a dispersive formalism (Roy-Steiner equations). M K ∗ = 763 ± 2 MeV and Γ K ∗ = 146 ± 2 MeV, with | g | = 6 . 01 ± 0 . 07. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.Rodas, J.R.Pel´ aez Regge trajectories of strange resonances 7 / 28

  9. ρ (770) resonance Figure: Carrasco et al.-Phys.Lett. B749 (2015) 399-406 We (black) recover a fair representation of the partial wave, in agreement with the GKPY amplitude (red) Neglecting the background vs. Regge pole gives a 10-15% error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.Rodas, J.R.Pel´ aez Regge trajectories of strange resonances 8 / 28

  10. ρ (770) resonance Figure: Carrasco et al.-Phys.Lett. B749 (2015) 399-406 It is almost a linear regge trajectory. This is a prediction for the whole tower of ρ (770) Regge partners: ρ (1690) , ρ (2350) ... Intercept α 0 = 0 . 52 ± 0 . 002, and Slope α ′ = 0 . 902 ± 0 . 004GeV − 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.Rodas, J.R.Pel´ aez Regge trajectories of strange resonances 9 / 28

  11. K ∗ (892) resonance Figure: Pel´ aez-Rodas-Phys.Rev. D93 (2016) no.7, 074025 We use as input the parameters obtained using a dispersive formalism. M K ∗ = 892 ± 1 MeV and Γ K ∗ = 58 ± 2 MeV, with | g | = 6 . 02 ± 0 . 06. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.Rodas, J.R.Pel´ aez Regge trajectories of strange resonances 10 / 28

  12. K ∗ (892) resonance Figure: Carrasco et al.-Phys.Lett. B749 (2015) 399-406 It is almost a linear regge trajectory. It is a prediction, not a fit. Consistent with the fits in the literature. Intercept α 0 = 0 . 32 ± 0 . 01, and Slope α ′ = 0 . 83 ± 0 . 01GeV − 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.Rodas, J.R.Pel´ aez Regge trajectories of strange resonances 11 / 28

  13. K 1 (1400) resonance Very elastic to K ∗ (892) π with BR = 94 ± 6%. The K 1 (1400) is a clear resonance, we use a Breit-Wigner description. The result obtained with our method is compatible near the pole. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.Rodas, J.R.Pel´ aez Regge trajectories of strange resonances 12 / 28

  14. K 1 (1400) resonance It is almost linear. There is no partner, but we can compare our trajectory with other fits in the same energy region. − 0 . 03 , and Slope α ′ = 0 . 90 ± 0 . 01GeV − 2 . Intercept α 0 = − 0 . 72 +0 . 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.Rodas, J.R.Pel´ aez Regge trajectories of strange resonances 13 / 28

  15. K ∗ 0 (1430) resonance Very elastic to K π with BR = 93 ± 10%. There are 2 resonances in this region, but we neglect the contribution of the κ for the K ∗ 0 (1430) calculation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.Rodas, J.R.Pel´ aez Regge trajectories of strange resonances 14 / 28

  16. K ∗ 0 (1430) resonance Solution obtained with the method. Many models predict quark-antiquark with sizable mixing to K π . The result obtained with our method is compatible near the pole. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.Rodas, J.R.Pel´ aez Regge trajectories of strange resonances 15 / 28

  17. K ∗ 0 (1430) resonance It is almost linear, the method does not describe properly the scattering lengths (there are 2 poles). − 0 . 15 , and Slope α ′ = 0 . 81 ± 0 . 1GeV − 2 . Intercept α 0 = − 1 . 15 +0 . 23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.Rodas, J.R.Pel´ aez Regge trajectories of strange resonances 16 / 28

  18. Non-ordinary resonances For non-ordinary resonances one expects the regge trajectories to be non-linear. We are interested in the σ and the κ , considered as non-usual resonances. Our method cannot predict the compositeness of a resonance, but it shows when a resonance its a non-ordinary candidate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.Rodas, J.R.Pel´ aez Regge trajectories of strange resonances 17 / 28

  19. σ/ f 0 (500) resonance Figure: Garc´ ıa-Mart´ ın et al.-Phys.Rev. D83 (2011) 074004 Candidate for non-ordinary behavior. Huge width, there is no resonant behavior in the partial wave. The parameters of the resonance are obtained using Roy-Steiner equations. M σ = 457 +14 − 15 MeV, Γ σ = 558 +22 − 14 MeV, | g | = 3 . 59 +0 . 11 − 0 . 13 GeV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.Rodas, J.R.Pel´ aez Regge trajectories of strange resonances 18 / 28

  20. σ/ f 0 (500) resonance Fair agreement in the resonant region. If we impose a linear regge trajectory the result spoils the data description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.Rodas, J.R.Pel´ aez Regge trajectories of strange resonances 19 / 28

  21. σ/ f 0 (500) resonance Figure: Londergan et al.-Phys.Lett. B729 (2014) 9-14 We compare the results of the σ with the usual linear regge trajectory of the ρ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.Rodas, J.R.Pel´ aez Regge trajectories of strange resonances 20 / 28

Recommend


More recommend