light meson spectroscopy and regge trajectories in the
play

LIGHT MESON SPECTROSCOPY AND REGGE TRAJECTORIES IN THE RELATIVISTIC - PowerPoint PPT Presentation

LIGHT MESON SPECTROSCOPY AND REGGE TRAJECTORIES IN THE RELATIVISTIC QUARK MODEL Rudolf Faustov Dorodnicyn Computing Centre RAS, Moscow (in collaboration with Dietmar Ebert and Vladimir Galkin) Ebert, Faustov, Galkin Eur. Phys. J.C 60,


  1. LIGHT MESON SPECTROSCOPY AND REGGE TRAJECTORIES IN THE RELATIVISTIC QUARK MODEL Rudolf Faustov Dorodnicyn Computing Centre RAS, Moscow (in collaboration with Dietmar Ebert and Vladimir Galkin) Ebert, Faustov, Galkin — Eur. Phys. J.C 60, 273-278 (2009) Ebert, Faustov, Galkin — Phys. Rev. D 79, 114029 (2009)

  2. OUTLINE 1. Introduction 2. Relativistic quark model 3. Mass spectra of light quark-antiquark mesons 4. Regge trajectories of light mesons 5. Masses of light tetraquarks in the diquark-antidiquark picture 6. Masses of light scalar mesons

  3. INTRODUCTION • Vast amount of experimental data on light meson with masses up to 2500 MeV is available. = ⇒ The classification of these new data requires a better theoretical understanding of light meson mass spectra. • Light exotic states (such as tetraquarks, glueballs, hybrids) predicted by quantum chromodynamics (QCD) are expected to have masses in this range. • It is argued by Glozman et al. that the states of the same spin with different isospins and opposite parities are approximately degenerate in the interval 1700-2400 MeV. An intensive debate is going on now in the literature about whether the chiral symmetry is restored for highly excited states. • Renewed interest to the Regge trajectories both in ( M 2 , J ) and ( M 2 , n r ) planes ( M is the mass, J is the spin and n r is the radial quantum number of the meson state): their linearity, parallelism and equidistance. = ⇒ Assignment of experimentally observed mesons to particular Regge trajectories. • Problem of scalar mesons: • Abundance and peculiar properties of light scalars • Experimental and theoretical evidence for the existence of f 0 (600)( σ ) , K ∗ 0 (800)( κ ) , f 0 (980) and a 0 (980) indicates that lightest scalars form a full SU (3) flavour nonet. • Inversion of the mass ordering of light scalars, which cannot be naturally understood in the q ¯ q picture. = ⇒ Various alternative interpretations: ⋆ four-quark states (tetraquarks) and in particular diquark-antidiquark bound states ⋆ proximity of f 0 /a 0 to the K ¯ K threshold led to the K ¯ K molecular picture.

  4. Comparison of a traditional ideally mixed q ¯ q nonet of light mesons (like vector mesons) with the scalar diquark-antidiquark nonet and experimentally known light scalar mesons. Diquarks are considered in the colour antitriplet state.

  5. RELATIVISTIC QUARK MODEL Relativistic quasipotential equation of Schr¨ odinger type: ! b 2 ( M ) − p 2 d 3 q Z Ψ M ( p ) = (2 π ) 3 V ( p , q ; M )Ψ M ( q ) 2 µ R 2 µ R p - relative momentum of quarks M - bound state mass ( M = E 1 + E 2 ) µ R - relativistic reduced mass: = M 4 − ( m 2 1 − m 2 2 ) 2 E 1 E 2 µ R = 4 M 3 E 1 + E 2 b ( M ) - on-mass-shell relative momentum in cms: b 2 ( M ) = [ M 2 − ( m 1 + m 2 ) 2 ][ M 2 − ( m 1 − m 2 ) 2 ] 4 M 2 E 1 , 2 - center of mass energies: E 1 = M 2 − m 2 E 2 = M 2 − m 2 2 + m 2 1 + m 2 1 2 , 2 M 2 M

  6. • Parameters of the model fixed from heavy meson sector • q ¯ q quasipotential q 1 q 1 q 1 q 1 q 1 q 1 Conf V QCD = g + (string) q 2 ¯ q 2 ¯ q 2 ¯ q 2 ¯ q 2 ¯ q 2 ¯ ( ) 4 3 α S D µν ( k ) γ µ 1 γ ν 2 + V V conf ( k )Γ µ 1 Γ 2; µ + V S V ( p , q ; M ) = ¯ u 1 ( p )¯ u 2 ( − p ) conf ( k ) u 1 ( q ) u 2 ( − q ) k = p − q D µν ( k ) - (perturbative) gluon propagator Γ µ ( k ) - effective long-range vertex with Pauli term: Γ µ ( k ) = γ µ + iκ 2 mσ µν k ν , κ - anomalous chromomagnetic moment of quark,

  7. 0 1 1 s ǫ ( p ) + m u λ ( p ) = A χ λ , σ p @ 2 ǫ ( p ) ǫ ( p ) + m p 2 + m 2 . p with ǫ ( p ) = • Lorentz structure of V conf = V V conf + V S conf In nonrelativistic limit V V ff = (1 − ε )( Ar + B ) conf Sum : ( Ar + B ) V S = ε ( Ar + B ) conf ε - mixing parameter V Coul ( r ) = − 4 α s 3 r V Cornell ( r ) = − 4 α s r + Ar + B 3

  8. Parameters A , B , κ , ε and quark masses fixed from analysis of meson masses and radiative decays: ε = − 1 from heavy quarkonium radiative decays ( J/ψ → η c + γ ) and HQET from fine splitting of heavy quarkonium 3 P J states and HQET κ = − 1 (1 + κ ) = 0 = ⇒ vanishing long-range chromomagnetic interaction (flux tube model) Freezing of α s for light quarks 4 π β 0 = 11 − 2 2 m 1 m 2 α s ( µ ) = , 3 n f , µ = , µ 2+ M 2 m 1 + m 2 0 β 0 ln Λ2 √ M 0 = 2 . 24 A = 0 . 95 GeV Quasipotential parameters: A = 0 . 18 GeV 2 , B = − 0 . 30 GeV, Λ = 0 . 413 GeV (from M ρ ) Quark masses: m b = 4 . 88 GeV m s = 0 . 50 GeV m c = 1 . 55 GeV m u,d = 0 . 33 GeV

  9. • Light tetraquarks in diquark-antidiquark picture V qq ′ = 1 ( qq ′ ) -interaction: 2 V q ¯ q ′ V ( p , q ; M ) = ¯ u 1 ( p )¯ u 2 ( − p ) V ( p , q ; M ) u 1 ( q ) u 2 ( − q ) , where V ( p , q ; M ) = 2 2 + 1 1 Γ 2; µ + 1 3 α s D µν ( k ) γ µ 1 γ ν 2 V V conf ( k )Γ µ 2 V S conf ( k ) ( d 1 ¯ d = ( qq ′ ) d 2 )-interaction: 3 α s D µν ( k ) � d 2 ( P ′ ) | J ν | d 2 ( Q ′ ) � V ( p , q ; M ) = � d 1 ( P ) | J µ | d 1 ( Q ) � 4 2 p E d 1 E d 1 2 p E d 2 E d 2 h i + ψ ∗ d 1 ( P ) ψ ∗ d 2 ( P ′ ) J d 1; µ J µ d 2 V V conf ( k ) + V S ψ d 1 ( Q ) ψ d 2 ( Q ′ ) , conf ( k ) d 1 d 1 d 1 d 1 d 1 d 1 Conf V QCD = g + (string) ¯ ¯ ¯ ¯ ¯ ¯ d 2 d 2 d 2 d 2 d 2 d 2

  10. J d,µ – effective long-range vector vertex of diquark: ( P + Q ) µ 8 for scalar diquark > q > > 2 E d ( p ) E d ( q ) > < J d ; µ = for axial vector ( P + Q ) µ + iµ d 2 M d Σ ν − µ k ν > > q diquark ( µ d = 0 ) > > 2 E d ( p ) E d ( q ) : µ d - total chromomagnetic moment of axial vector diquark (Σ ρσ ) ν µ = − i ( g µρ δ ν σ − g µσ δ ν diquark spin matrix: ρ ) S d - axial vector diquark spin: ( S d ; k ) il = − iε kil ψ d ( P ) – diquark wave function:  1 for scalar diquark ψ d ( p ) = ε d ( p ) for axial vector diquark ε d ( p ) – polarization vector of axial vector diquark � d ( P ) | J µ | d ( Q ) � – vertex of diquark-gluon interaction: Z d 3 p d 3 q (2 π ) 6 ¯ Ψ d P ( p )Γ µ ( p , q )Ψ d Q ( q ) ⇒ F ( k 2 ) � d ( P ) | J µ (0) | d ( Q ) � = Γ µ – two-particle vertex function of the diquark-gluon interaction

  11. MASSES OF LIGHT QUARK-ANTIQUARK MESONS The quasipotential of q ¯ q interaction is extremely nonlocal in configuration space for arbitrary quark masses. To make it local ⋆ heavy quarks: nonrelativistic v/c or heavy quark 1 /m Q expansion ⋆ light quarks: highly relativistic, substitution M 2 − m 2 q ′ + m 2 q q q + p 2 → E q = m 2 ǫ q ( p ) ≡ 2 M q ¯ q potential V q ¯ q ( r ) = V SI ( r ) + V SD ( r ) spin-dependent potential − S 1 S 2 + 3 » – V SD ( r ) = a 1 LS 1 + a 2 LS 2 + b r 2 ( S 1 r )( S 2 r ) + c S 1 S 2 + d ( LS 1 )( LS 2 ) where e.g. " 2 „ E 1 − m 1 − (1 + κ ) E 1 + m 1 « ∆ ¯ c = V Coul ( r ) + 3 E 1 E 2 2 m 1 2 m 1 # „ E 2 − m 2 − (1 + κ ) E 2 + m 2 « ∆ V V × conf ( r ) 2 m 2 2 m 2

  12. spin-independent potential ( V SI ( r ) = V Coul ( r ) + V conf ( r ) + ( E 2 1 − m 2 1 + E 2 2 − m 2 2 ) 2 1 V Coul ( r ) 4( E 1 + m 1 )( E 2 + m 2 ) E 1 E 2 " 1 (1 + κ )( E 1 + m 1 )( E 2 + m 2 ) + 1 + (1 + κ ) m 1 m 2 E 1 E 2 «#! ) „ E 1 + m 1 + E 1 + m 2 1 V V V S − conf ( r ) + conf ( r ) E 1 E 2 m 1 m 2 +1 „ 1 1 « E 1 ( E 1 + m 1 )∆ ˜ V (1) E 2 ( E 2 + m 2 )∆ ˜ V (2) Coul ( r ) + Coul ( r ) 4 − 1 1 1 1 1 » „ «– ∆ V V m 1 ( E 1 + m 1 ) + m 2 ( E 2 + m 2 ) − (1 + κ ) + conf ( r ) 4 E 1 m 1 E 2 m 2 ( E 2 1 − m 2 1 + E 2 2 − m 2 L 2 2 ) 1 8 m 1 m 2 ( E 1 + m 1 )( E 2 + m 2 )∆ V S V ′ ¯ + conf ( r ) + Coul ( r ) , E 1 E 2 2 r

  13. Table 1: Masses of excited light ( q = u, d ) unflavored mesons (in MeV). Theory Experiment Theory Experiment n 2 S +1 L J J PC q ¯ q I = 1 mass I = 0 mass s ¯ s I = 0 mass 1 1 S 0 0 − + 154 π 139.57 743 1 3 S 1 1 −− 776 ρ 775.49(34) ω 782.65(12) 1038 ϕ 1019.455(20) 1 3 P 0 0 ++ 1176 a 0 1474(19) f 0 1200-1500 1420 f 0 1505(6) 1 3 P 1 1 ++ 1254 a 1 1230(40) f 1 1281.8(6) 1464 f 1 1426.4(9) 1 3 P 2 2 ++ f ′ 1317 a 2 1318.3(6) f 2 1275.1(12) 1529 1525(5) 2 1 1 P 1 1 + − 1258 b 1 1229.5(32) h 1 1170(20) 1485 h 1 1386(19) 2 1 S 0 0 − + 1292 π 1300(100) η 1294(4) 1536 η 1476(4) 2 3 S 1 1 −− 1486 ρ 1465(25) ω 1400-1450 1698 ϕ 1680(20) 1 3 D 1 1 −− 1557 ρ 1570(70) ω 1670(30) 1845 1 3 D 2 2 −− 1661 1908 1 3 D 3 3 −− ρ 3 ω 3 ϕ 3 1714 1688.8(21) 1667(4) 1950 1854(7) 1 1 D 2 2 − + 1643 π 2 1672.4(32) η 2 1617(5) 1909 η 2 1842(8) 2 3 P 0 0 ++ 1679 f 0 1724(7) 1969 2 3 P 1 1 ++ 1742 a 1 1647(22) 2016 f 1 1971(15) 2 3 P 2 2 ++ 1779 a 2 1732(16) f 2 1755(10) 2030 f 2 2010(70) 2 1 P 1 1 + − 1721 2024 3 1 S 0 0 − + 1788 π 1816(14) η 1756(9) 2085 η 2103(50) 3 3 S 1 1 −− 1921 ρ 1909(31) ω 1960(25) 2119 ϕ 2175(15) 1 3 F 2 2 ++ 1797 f 2 1815(12) 2143 f 2 2156(11) 1 3 F 3 3 ++ 1910 a 3 1874(105) 2215 f 3 2334(25) 1 3 F 4 4 ++ 2018 a 4 2001(10) f 4 2018(11) 2286

Recommend


More recommend