reduplication and finite state machinery
play

Reduplication and Finite-State Machinery Hossep Dolatian & - PowerPoint PPT Presentation

Introduction FSTs in Phonology FSTs & Reduplication 2-w ay FSTs & Reduplication Reduplication typology Conclusion References Reduplication and Finite-State Machinery Hossep Dolatian & Jeffrey Heinz University of Delaware May


  1. Introduction FSTs in Phonology FSTs & Reduplication 2-w ay FSTs & Reduplication Reduplication typology Conclusion References Finite-State Machinery & Phonology - examples ● Working example: /bampi/ → [bambi] Input: ⋊ b a m p i ⋉ Output: ⋊ b a m b i ⋉ T:T, D:D, V:V ⋊ : ⋊ ⋉ : ⋉ q 0 q 1 q 3 start V:V, D:D, T:D N:N ⋉ : ⋉ q 2 N:N 18 / 97

  2. Introduction FSTs in Phonology FSTs & Reduplication 2-w ay FSTs & Reduplication Reduplication typology Conclusion References Finite-State Machinery & Phonology - examples ● Working example: /bampi/ → [bambi] Input: ⋊ b a m p i ⋉ � ⋉ Output: ⋊ b a m b i T:T, D:D, V:V ⋊ : ⋊ ⋉ : ⋉ q 0 q 1 q 3 start V:V, D:D, T:D N:N ⋉ : ⋉ q 2 N:N 19 / 97

  3. Introduction FSTs in Phonology FSTs & Reduplication 2-w ay FSTs & Reduplication Reduplication typology Conclusion References Finite-State Machinery & Phonology ● And virtually all known transformations from UR to SR can be modeled with finite-state transducers (Chandlee, 2014; Kaplan and Kay, 1994) ▸ repairing marked substructures (phonotactics) ▸ vowel harmony ▸ stress ▸ affixation ▸ partial reduplication ▸ but... 20 / 97

  4. Introduction FSTs in Phonology FSTs & Reduplication 2-w ay FSTs & Reduplication Reduplication typology Conclusion References Finite-State Machinery & Reduplication ● Only robust exception is (total) reduplication, 21 / 97

  5. Introduction FSTs in Phonology FSTs & Reduplication 2-w ay FSTs & Reduplication Reduplication typology Conclusion References Finite-State Machinery & Reduplication ● Only robust exception is (total) reduplication, ● Why? Because FSAs and FSTs have a finite memory. 21 / 97

  6. Introduction FSTs in Phonology FSTs & Reduplication 2-w ay FSTs & Reduplication Reduplication typology Conclusion References Finite-State Machinery & Reduplication ● Only robust exception is (total) reduplication, ● Why? Because FSAs and FSTs have a finite memory. � post-nasal voicing : can remember if a nasal was recently seen 21 / 97

  7. Introduction FSTs in Phonology FSTs & Reduplication 2-w ay FSTs & Reduplication Reduplication typology Conclusion References Finite-State Machinery & Reduplication ● Only robust exception is (total) reduplication, ● Why? Because FSAs and FSTs have a finite memory. � post-nasal voicing : can remember if a nasal was recently seen � partial CV-reduplication : can remember the first 2 segments 21 / 97

  8. Introduction FSTs in Phonology FSTs & Reduplication 2-w ay FSTs & Reduplication Reduplication typology Conclusion References Finite-State Machinery & Reduplication ● Only robust exception is (total) reduplication, ● Why? Because FSAs and FSTs have a finite memory. � post-nasal voicing : can remember if a nasal was recently seen � partial CV-reduplication : can remember the first 2 segments � total reduplication : can’t remember all the segments in the word if the word has no maximum size 21 / 97

  9. Introduction FSTs in Phonology FSTs & Reduplication 2-w ay FSTs & Reduplication Reduplication typology Conclusion References Table of Contents Introduction FSTs in Phonology FSTs & Reduplication 2-way FSTs & Reduplication Reduplication typology Conclusion 22 / 97

  10. Introduction FSTs in Phonology FSTs & Reduplication 2-w ay FSTs & Reduplication Reduplication typology Conclusion References Reduplication & FSTs - Partial RED ● Partial reduplication : can be modeled in FST if there is a maximum size for the reduplicant (Chandlee and Heinz, 2012) 23 / 97

  11. Introduction FSTs in Phonology FSTs & Reduplication 2-w ay FSTs & Reduplication Reduplication typology Conclusion References Reduplication & FSTs - Partial RED ● Partial reduplication : can be modeled in FST if there is a maximum size for the reduplicant (Chandlee and Heinz, 2012) ● Initial CV-RED with small alphabet: Σ = { p,t,a } q 2 Σ ∶ Σ t:t a:a ∼ ta ⋊ : ⋊ ⋉ : ⋉ q 0 q 1 q 4 q 5 start p:p a:a ∼ pa q 3 23 / 97

  12. Introduction FSTs in Phonology FSTs & Reduplication 2-w ay FSTs & Reduplication Reduplication typology Conclusion References Reduplication & FSTs - Partial RED ● Working example: /RED+pat/ → ? Input: ⋊ p a t ⋉ Output: q 2 Σ ∶ Σ t:t a:a ∼ ta ⋊ : ⋊ ⋉ : ⋉ q 0 q 1 q 4 q 5 start p:p a:a ∼ pa q 3 24 / 97

  13. Introduction FSTs in Phonology FSTs & Reduplication 2-w ay FSTs & Reduplication Reduplication typology Conclusion References Reduplication & FSTs - Partial RED ● Working example: /RED+pat/ → [pa ∼ pat] 25 / 97

  14. Introduction FSTs in Phonology FSTs & Reduplication 2-w ay FSTs & Reduplication Reduplication typology Conclusion References Reduplication & FSTs - Partial RED ● Working example: /RED+pat/ → [pa ∼ pat] Input: ⋊ p a t ⋉ Output: q 2 Σ ∶ Σ t:t a:a ∼ ta ⋊ : ⋊ ⋉ : ⋉ q 0 q 1 q 4 q 5 start p:p a:a ∼ pa q 3 25 / 97

  15. Introduction FSTs in Phonology FSTs & Reduplication 2-w ay FSTs & Reduplication Reduplication typology Conclusion References Reduplication & FSTs - Partial RED ● Working example: /RED+pat/ → [pa ∼ pat] Input: ⋊ p a t ⋉ Output: ⋊ q 2 Σ ∶ Σ t:t a:a ∼ ta ⋊ : ⋊ ⋉ : ⋉ q 0 q 1 q 4 q 5 start p:p a:a ∼ pa q 3 26 / 97

  16. Introduction FSTs in Phonology FSTs & Reduplication 2-w ay FSTs & Reduplication Reduplication typology Conclusion References Reduplication & FSTs - Partial RED ● Working example: /RED+pat/ → [pa ∼ pat] Input: ⋊ p a t ⋉ Output: ⋊ p q 2 Σ ∶ Σ t:t a:a ∼ ta ⋊ : ⋊ ⋉ : ⋉ q 0 q 1 q 4 q 5 start p:p a:a ∼ pa q 3 27 / 97

  17. Introduction FSTs in Phonology FSTs & Reduplication 2-w ay FSTs & Reduplication Reduplication typology Conclusion References Reduplication & FSTs - Partial RED ● Working example: /RED+pat/ → [pa ∼ pat] Input: ⋊ p a t ⋉ Output: ⋊ p a ∼ pa q 2 Σ ∶ Σ t:t a:a ∼ ta ⋊ : ⋊ ⋉ : ⋉ q 0 q 1 q 4 q 5 start p:p a:a ∼ pa q 3 28 / 97

  18. Introduction FSTs in Phonology FSTs & Reduplication 2-w ay FSTs & Reduplication Reduplication typology Conclusion References Reduplication & FSTs - Partial RED ● Working example: /RED+pat/ → [pa ∼ pat] Input: ⋊ p a t ⋉ Output: ⋊ p a ∼ pa t q 2 Σ ∶ Σ t:t a:a ∼ ta ⋊ : ⋊ ⋉ : ⋉ q 0 q 1 q 4 q 5 start p:p a:a ∼ pa q 3 29 / 97

  19. Introduction FSTs in Phonology FSTs & Reduplication 2-w ay FSTs & Reduplication Reduplication typology Conclusion References Reduplication & FSTs - Partial RED ● Working example: /RED+pat/ → [pa ∼ pat] Input: ⋊ p a t ⋉ Output: ⋊ p a ∼ pa t ⋉ q 2 Σ ∶ Σ t:t a:a ∼ ta ⋊ : ⋊ ⋉ : ⋉ q 0 q 1 q 4 q 5 start p:p a:a ∼ pa q 3 30 / 97

  20. Introduction FSTs in Phonology FSTs & Reduplication 2-w ay FSTs & Reduplication Reduplication typology Conclusion References Reduplication & FSTs - Partial RED ● Working example: /RED+pat/ → [pa ∼ pat] Input: ⋊ p a t ⋉ � ⋉ Output: ⋊ p a ∼ pa t q 2 Σ ∶ Σ t:t a:a ∼ ta ⋊ : ⋊ ⋉ : ⋉ q 0 q 1 q 4 q 5 start p:p a:a ∼ pa q 3 31 / 97

  21. Introduction FSTs in Phonology FSTs & Reduplication 2-w ay FSTs & Reduplication Reduplication typology Conclusion References Reduplication & FSTs - Partial RED ● Partial reduplication : can be modeled in FST if there’s a maximum size for the reduplicant ● But... 32 / 97

  22. Introduction FSTs in Phonology FSTs & Reduplication 2-w ay FSTs & Reduplication Reduplication typology Conclusion References Reduplication & FSTs - Partial RED ● Partial reduplication : can be modeled in FST if there’s a maximum size for the reduplicant ● But... bigger alphabet and RED size → more states 32 / 97

  23. Introduction FSTs in Phonology FSTs & Reduplication 2-w ay FSTs & Reduplication Reduplication typology Conclusion References Reduplication & FSTs - Partial RED ● Partial reduplication : can be modeled in FST if there’s a maximum size for the reduplicant ● But... bigger alphabet and RED size → more states ● Σ = { p,t,a } ... q 2 Σ ∶ Σ t:t a:a ∼ ta ⋊ : ⋊ ⋉ : ⋉ q 0 q 1 q k q 4 q 5 start p:p a:a ∼ pa q 3 32 / 97

  24. Introduction FSTs in Phonology FSTs & Reduplication 2-w ay FSTs & Reduplication Reduplication typology Conclusion References Reduplication & FSTs - Partial RED ● Partial reduplication : can be modeled in FST if there’s a maximum size for the reduplicant ● But... bigger alphabet and RED size → more states ● Σ = { p,t,a,k } ... q 2 Σ ∶ Σ t:t a:a ∼ ta ⋊ : ⋊ k:k a:a ∼ ka ⋉ : ⋉ q 0 q 1 q k q 4 q 5 start p:p a:a ∼ pa q 3 33 / 97

  25. Introduction FSTs in Phonology FSTs & Reduplication 2-w ay FSTs & Reduplication Reduplication typology Conclusion References Reduplication & FSTs- Deadend ● Partial reduplication can be modeled in FSTs but it causes an explosion of states (Chandlee, 2014) 34 / 97

  26. Introduction FSTs in Phonology FSTs & Reduplication 2-w ay FSTs & Reduplication Reduplication typology Conclusion References Reduplication & FSTs- Deadend ● Partial reduplication can be modeled in FSTs but it causes an explosion of states (Chandlee, 2014) ▸ They are thus "burdensome models" (Roark and Sproat, 2007, 54) 34 / 97

  27. Introduction FSTs in Phonology FSTs & Reduplication 2-w ay FSTs & Reduplication Reduplication typology Conclusion References Reduplication & FSTs- Deadend ● Partial reduplication can be modeled in FSTs but it causes an explosion of states (Chandlee, 2014) ▸ They are thus "burdensome models" (Roark and Sproat, 2007, 54) ● Theoretically partial reduplication is understood as copying , but the FSTs for it just remember all possible reduplicants 34 / 97

  28. Introduction FSTs in Phonology FSTs & Reduplication 2-w ay FSTs & Reduplication Reduplication typology Conclusion References Reduplication & FSTs- Deadend ● Partial reduplication can be modeled in FSTs but it causes an explosion of states (Chandlee, 2014) ▸ They are thus "burdensome models" (Roark and Sproat, 2007, 54) ● Theoretically partial reduplication is understood as copying , but the FSTs for it just remember all possible reduplicants ▸ "The model is naive in that it simply remembers what was inserted, and then imposes the requirement that the base match appropriately." (Roark and Sproat, 2007, 54) 34 / 97

  29. Introduction FSTs in Phonology FSTs & Reduplication 2-w ay FSTs & Reduplication Reduplication typology Conclusion References Reduplication & FSTs- Deadend ● Partial reduplication can be modeled in FSTs but it causes an explosion of states (Chandlee, 2014) ▸ They are thus "burdensome models" (Roark and Sproat, 2007, 54) ● Theoretically partial reduplication is understood as copying , but the FSTs for it just remember all possible reduplicants ▸ "The model is naive in that it simply remembers what was inserted, and then imposes the requirement that the base match appropriately." (Roark and Sproat, 2007, 54) → FSTs don’t capture partial reduplication in a concrete away 34 / 97

  30. Introduction FSTs in Phonology FSTs & Reduplication 2-w ay FSTs & Reduplication Reduplication typology Conclusion References Reduplication & FSTs - Deadend ● Total reduplication cannot be modeled at all. 35 / 97

  31. Introduction FSTs in Phonology FSTs & Reduplication 2-w ay FSTs & Reduplication Reduplication typology Conclusion References Reduplication & FSTs - Deadend ● Total reduplication cannot be modeled at all. ▸ Why?: If reduplicant is of unbounded size → no FST could do the job because an infinite number of states would be needed 35 / 97

  32. Introduction FSTs in Phonology FSTs & Reduplication 2-w ay FSTs & Reduplication Reduplication typology Conclusion References Reduplication & FSTs - Deadend ● Total reduplication cannot be modeled at all. ▸ Why?: If reduplicant is of unbounded size → no FST could do the job because an infinite number of states would be needed ▸ So? : some finite-state approximations exist... (Hulden, 2009; Beesley and Karttunen, 2003; Walther, 2000) 35 / 97

  33. Introduction FSTs in Phonology FSTs & Reduplication 2-w ay FSTs & Reduplication Reduplication typology Conclusion References Reduplication & FSTs - Deadend ● Total reduplication cannot be modeled at all. ▸ Why?: If reduplicant is of unbounded size → no FST could do the job because an infinite number of states would be needed ▸ So? : some finite-state approximations exist... (Hulden, 2009; Beesley and Karttunen, 2003; Walther, 2000) ▸ But : they impose un-linguistic restrictions (e.g. a finite bound on word size,...) and don’t directly capture reduplication 35 / 97

  34. Introduction FSTs in Phonology FSTs & Reduplication 2-w ay FSTs & Reduplication Reduplication typology Conclusion References Reduplication & FSTs - Deadend ● Total reduplication cannot be modeled at all. ▸ Why?: If reduplicant is of unbounded size → no FST could do the job because an infinite number of states would be needed ▸ So? : some finite-state approximations exist... (Hulden, 2009; Beesley and Karttunen, 2003; Walther, 2000) ▸ But : they impose un-linguistic restrictions (e.g. a finite bound on word size,...) and don’t directly capture reduplication → total reduplication is outside the scope of FSTs, while partial reduplication can be modeled with FSTs but unelegantly 35 / 97

  35. Introduction FSTs in Phonology FSTs & Reduplication 2-w ay FSTs & Reduplication Reduplication typology Conclusion References Table of Contents Introduction FSTs in Phonology FSTs & Reduplication 2-way FSTs & Reduplication Reduplication typology Conclusion 36 / 97

  36. Introduction FSTs in Phonology FSTs & Reduplication 2-w ay FSTs & Reduplication Reduplication typology Conclusion References 2-way FSTs ● The previous FSTs can be described as one-way FSTs because they read the input once from left to right. 37 / 97

  37. Introduction FSTs in Phonology FSTs & Reduplication 2-w ay FSTs & Reduplication Reduplication typology Conclusion References 2-way FSTs ● The previous FSTs can be described as one-way FSTs because they read the input once from left to right. ● 2-way FSTs are an enriched class of FSTs that can go back and forth on the input (Engelfriet and Hoogeboom, 2001; Savitch, 1982). ● A 2-way FST can do everything a 1-way FST can do, and more. 37 / 97

  38. Introduction FSTs in Phonology FSTs & Reduplication 2-w ay FSTs & Reduplication Reduplication typology Conclusion References 2-way FSTs - Total RED ● To model total reduplication, the below 2FST reads the input left to right (1st copy), goes back, and reads the input again (2nd copy) Σ ∶ Σ ∶ + 1 ⋊ : ⋊ +1 q 0 q 1 start ⋉ : ∼ ∶ − 1 ⋉ : ⋉ :+1 ⋊ : ǫ ∶ + 1 q 2 q 3 q 4 Σ ∶ ǫ ∶ − 1 Σ ∶ Σ ∶ + 1 38 / 97

  39. Introduction FSTs in Phonology FSTs & Reduplication 2-w ay FSTs & Reduplication Reduplication typology Conclusion References 2-way FSTs - Total RED ● Working example: /bye+RED/ → ? Input: ⋊ b y e ⋉ Output: Σ ∶ Σ ∶ + 1 ⋊ : ⋊ :+1 q 0 q 1 start ⋉ : ∼ ∶ − 1 ⋉ : ⋉ :+1 ⋊ : ǫ ∶ + 1 q 2 q 3 q 4 Σ ∶ ǫ ∶ − 1 39 / 97 Σ ∶ Σ ∶ + 1

  40. Introduction FSTs in Phonology FSTs & Reduplication 2-w ay FSTs & Reduplication Reduplication typology Conclusion References 2-way FSTs - Total RED ● Working example: /bye+RED/ → [bye ∼ bye] 40 / 97

  41. Introduction FSTs in Phonology FSTs & Reduplication 2-w ay FSTs & Reduplication Reduplication typology Conclusion References 2-way FSTs - Total RED ● Working example: /bye+RED/ → [bye ∼ bye] Input: ⋊ b y e ⋉ Output: Σ ∶ Σ ∶ + 1 ⋊ : ⋊ :+1 q 0 q 1 start ⋉ : ∼ ∶ − 1 ⋉ : ⋉ :+1 ⋊ : ǫ ∶ + 1 q 2 q 3 q 4 Σ ∶ ǫ ∶ − 1 40 / 97 Σ ∶ Σ ∶ + 1

  42. Introduction FSTs in Phonology FSTs & Reduplication 2-w ay FSTs & Reduplication Reduplication typology Conclusion References 2-way FSTs - Total RED ● Working example: /bye+RED/ → [bye ∼ bye] Input: ⋊ b y e ⋉ Output: ⋊ Σ ∶ Σ ∶ + 1 ⋊ : ⋊ :+1 q 0 q 1 start ⋉ : ∼ ∶ − 1 ⋉ : ⋉ :+1 ⋊ : ǫ ∶ + 1 q 2 q 3 q 4 Σ ∶ ǫ ∶ − 1 41 / 97 Σ ∶ Σ ∶ + 1

  43. Introduction FSTs in Phonology FSTs & Reduplication 2-w ay FSTs & Reduplication Reduplication typology Conclusion References 2-way FSTs - Total RED ● Working example: /bye+RED/ → [bye ∼ bye] Input: ⋊ b y e ⋉ Output: ⋊ b Σ ∶ Σ ∶ + 1 ⋊ : ⋊ :+1 q 0 q 1 start ⋉ : ∼ ∶ − 1 ⋉ : ⋉ :+1 ⋊ : ǫ ∶ + 1 q 2 q 3 q 4 Σ ∶ ǫ ∶ − 1 42 / 97 Σ ∶ Σ ∶ + 1

  44. Introduction FSTs in Phonology FSTs & Reduplication 2-w ay FSTs & Reduplication Reduplication typology Conclusion References 2-way FSTs - Total RED ● Working example: /bye+RED/ → [bye ∼ bye] Input: ⋊ b y e ⋉ Output: ⋊ b y Σ ∶ Σ ∶ + 1 ⋊ : ⋊ :+1 q 0 q 1 start ⋉ : ∼ ∶ − 1 ⋉ : ⋉ :+1 ⋊ : ǫ ∶ + 1 q 2 q 3 q 4 Σ ∶ ǫ ∶ − 1 43 / 97 Σ ∶ Σ ∶ + 1

  45. Introduction FSTs in Phonology FSTs & Reduplication 2-w ay FSTs & Reduplication Reduplication typology Conclusion References 2-way FSTs - Total RED ● Working example: /bye+RED/ → [bye ∼ bye] Input: ⋊ b y e ⋉ Output: ⋊ b y e Σ ∶ Σ ∶ + 1 ⋊ : ⋊ :+1 q 0 q 1 start ⋉ : ∼ ∶ − 1 ⋉ : ⋉ :+1 ⋊ : ǫ ∶ + 1 q 2 q 3 q 4 Σ ∶ ǫ ∶ − 1 44 / 97 Σ ∶ Σ ∶ + 1

  46. Introduction FSTs in Phonology FSTs & Reduplication 2-w ay FSTs & Reduplication Reduplication typology Conclusion References 2-way FSTs - Total RED ● Working example: /bye+RED/ → [bye ∼ bye] Input: ⋊ b y e ⋉ Output: ⋊ b y e ∼ Σ ∶ Σ ∶ + 1 ⋊ : ⋊ :+1 q 0 q 1 start ⋉ : ∼ ∶ − 1 ⋉ : ⋉ :+1 ⋊ : ǫ ∶ + 1 q 2 q 3 q 4 Σ ∶ ǫ ∶ − 1 45 / 97 Σ ∶ Σ ∶ + 1

  47. Introduction FSTs in Phonology FSTs & Reduplication 2-w ay FSTs & Reduplication Reduplication typology Conclusion References 2-way FSTs - Total RED ● Working example: /bye+RED/ → [bye ∼ bye] Input: ⋊ b y e ⋉ Output: ⋊ b y e ∼ Σ ∶ Σ ∶ + 1 ⋊ : ⋊ :+1 q 0 q 1 start ⋉ : ∼ ∶ − 1 ⋉ : ⋉ :+1 ⋊ : ǫ ∶ + 1 q 2 q 3 q 4 Σ ∶ ǫ ∶ − 1 46 / 97 Σ ∶ Σ ∶ + 1

  48. Introduction FSTs in Phonology FSTs & Reduplication 2-w ay FSTs & Reduplication Reduplication typology Conclusion References 2-way FSTs - Total RED ● Working example: /bye+RED/ → [bye ∼ bye] Input: ⋊ b y e ⋉ Output: ⋊ b y e ∼ Σ ∶ Σ ∶ + 1 ⋊ : ⋊ :+1 q 0 q 1 start ⋉ : ∼ ∶ − 1 ⋉ : ⋉ :+1 ⋊ : ǫ ∶ + 1 q 2 q 3 q 4 Σ ∶ ǫ ∶ − 1 47 / 97 Σ ∶ Σ ∶ + 1

  49. Introduction FSTs in Phonology FSTs & Reduplication 2-w ay FSTs & Reduplication Reduplication typology Conclusion References 2-way FSTs - Total RED ● Working example: /bye+RED/ → [bye ∼ bye] Input: ⋊ b y e ⋉ Output: ⋊ b y e ∼ Σ ∶ Σ ∶ + 1 ⋊ : ⋊ :+1 q 0 q 1 start ⋉ : ∼ ∶ − 1 ⋉ : ⋉ :+1 ⋊ : ǫ ∶ + 1 q 2 q 3 q 4 Σ ∶ ǫ ∶ − 1 48 / 97 Σ ∶ Σ ∶ + 1

  50. Introduction FSTs in Phonology FSTs & Reduplication 2-w ay FSTs & Reduplication Reduplication typology Conclusion References 2-way FSTs - Total RED ● Working example: /bye+RED/ → [bye ∼ bye] Input: ⋊ b y e ⋉ Output: ⋊ b y e ∼ Σ ∶ Σ ∶ + 1 ⋊ : ⋊ :+1 q 0 q 1 start ⋉ : ∼ ∶ − 1 ⋉ : ⋉ :+1 ⋊ : ǫ ∶ + 1 q 2 q 3 q 4 Σ ∶ ǫ ∶ − 1 49 / 97 Σ ∶ Σ ∶ + 1

  51. Introduction FSTs in Phonology FSTs & Reduplication 2-w ay FSTs & Reduplication Reduplication typology Conclusion References 2-way FSTs - Total RED ● Working example: /bye+RED/ → [bye ∼ bye] Input: ⋊ b y e ⋉ Output: ⋊ b y e ∼ b Σ ∶ Σ ∶ + 1 ⋊ : ⋊ :+1 q 0 q 1 start ⋉ : ∼ ∶ − 1 ⋉ : ⋉ :+1 ⋊ : ǫ ∶ + 1 q 2 q 3 q 4 Σ ∶ ǫ ∶ − 1 50 / 97 Σ ∶ Σ ∶ + 1

  52. Introduction FSTs in Phonology FSTs & Reduplication 2-w ay FSTs & Reduplication Reduplication typology Conclusion References 2-way FSTs - Total RED ● Working example: /bye+RED/ → [bye ∼ bye] Input: ⋊ b y e ⋉ Output: ⋊ b y e ∼ b y Σ ∶ Σ ∶ + 1 ⋊ : ⋊ :+1 q 0 q 1 start ⋉ : ∼ ∶ − 1 ⋉ : ⋉ :+1 ⋊ : ǫ ∶ + 1 q 2 q 3 q 4 Σ ∶ ǫ ∶ − 1 51 / 97 Σ ∶ Σ ∶ + 1

  53. Introduction FSTs in Phonology FSTs & Reduplication 2-w ay FSTs & Reduplication Reduplication typology Conclusion References 2-way FSTs - Total RED ● Working example: /bye+RED/ → [bye ∼ bye] Input: ⋊ b y e ⋉ Output: ⋊ b y e ∼ b y e Σ ∶ Σ ∶ + 1 ⋊ : ⋊ :+1 q 0 q 1 start ⋉ : ∼ ∶ − 1 ⋉ : ⋉ :+1 ⋊ : ǫ ∶ + 1 q 2 q 3 q 4 Σ ∶ ǫ ∶ − 1 52 / 97 Σ ∶ Σ ∶ + 1

  54. Introduction FSTs in Phonology FSTs & Reduplication 2-w ay FSTs & Reduplication Reduplication typology Conclusion References 2-way FSTs - Total RED ● Working example: /bye+RED/ → [bye ∼ bye] Input: ⋊ b y e ⋉ Output: ⋊ b y e ∼ b y e ⋉ Σ ∶ Σ ∶ + 1 ⋊ : ⋊ :+1 q 0 q 1 start ⋉ : ∼ ∶ − 1 ⋉ : ⋉ :+1 ⋊ : ǫ ∶ + 1 q 2 q 3 q 4 Σ ∶ ǫ ∶ − 1 53 / 97 Σ ∶ Σ ∶ + 1

  55. Introduction FSTs in Phonology FSTs & Reduplication 2-w ay FSTs & Reduplication Reduplication typology Conclusion References 2-way FSTs - Total RED ● Working example: /bye+RED/ → [bye ∼ bye] Input: ⋊ b y e ⋉ ⋉ � Output: ⋊ b y e ∼ b y e Σ ∶ Σ ∶ + 1 ⋊ : ⋊ :+1 q 0 q 1 start ⋉ : ∼ ∶ − 1 ⋉ : ⋉ :+1 ⋊ : ǫ ∶ + 1 q 2 q 3 q 4 Σ ∶ ǫ ∶ − 1 54 / 97 Σ ∶ Σ ∶ + 1

  56. Introduction FSTs in Phonology FSTs & Reduplication 2-w ay FSTs & Reduplication Reduplication typology Conclusion References 2-way FSTs - Partial RED ● To model initial-CVC reduplication, the below 2FST reads the input (1st copy), goes back, and reads the input again (2nd copy) ⋊ : ⋊ :+1 C:C:+1 V:V:+1 q 0 q 1 q 2 q 3 start C:C:-1 ⋉ : ⋉ :+1 q 4 q 5 q 6 Σ ∶ ǫ ∶ − 1 ⋊ : ǫ ∶ + 1 Σ ∶ Σ ∶ + 1 55 / 97

  57. Introduction FSTs in Phonology FSTs & Reduplication 2-w ay FSTs & Reduplication Reduplication typology Conclusion References 2-way FSTs - Partial RED ● Working example: /RED+copies/ → ? Input: ⋊ c o p i e s ⋉ Output: ⋊ : ⋊ :+1 C:C:+1 V:V:+1 q 0 q 1 q 2 q 3 start C:C:-1 ⋉ : ⋉ :+1 q 4 q 5 q 6 Σ ∶ ǫ ∶ − 1 ⋊ : ∼ ∶ + 1 Σ ∶ Σ ∶ + 1 56 / 97

  58. Introduction FSTs in Phonology FSTs & Reduplication 2-w ay FSTs & Reduplication Reduplication typology Conclusion References 2-way FSTs - Partial RED ● Working example: /RED+copies/ → [cop ∼ copies] 57 / 97

  59. Introduction FSTs in Phonology FSTs & Reduplication 2-w ay FSTs & Reduplication Reduplication typology Conclusion References 2-way FSTs - Partial RED ● Working example: /RED+copies/ → [cop ∼ copies] Input: ⋊ c o p i e s ⋉ Output: ⋊ : ⋊ :+1 C:C:+1 V:V:+1 q 0 q 1 q 2 q 3 start C:C:-1 ⋉ : ⋉ :+1 q 4 q 5 q 6 Σ ∶ ǫ ∶ − 1 ⋊ : ∼ ∶ + 1 Σ ∶ Σ ∶ + 1 57 / 97

  60. Introduction FSTs in Phonology FSTs & Reduplication 2-w ay FSTs & Reduplication Reduplication typology Conclusion References 2-way FSTs - Partial RED ● Working example: /RED+copies/ → [cop ∼ copies] Input: ⋊ c o p i e s ⋉ Output: ⋊ ⋊ : ⋊ :+1 C:C:+1 V:V:+1 q 0 q 1 q 2 q 3 start C:C:-1 ⋉ : ⋉ :+1 q 4 q 5 q 6 Σ ∶ ǫ ∶ − 1 ⋊ : ∼ ∶ + 1 Σ ∶ Σ ∶ + 1 58 / 97

  61. Introduction FSTs in Phonology FSTs & Reduplication 2-w ay FSTs & Reduplication Reduplication typology Conclusion References 2-way FSTs - Partial RED ● Working example: /RED+copies/ → [cop ∼ copies] Input: ⋊ c o p i e s ⋉ Output: ⋊ c ⋊ : ⋊ :+1 C:C:+1 V:V:+1 q 0 q 1 q 2 q 3 start C:C:-1 ⋉ : ⋉ :+1 q 4 q 5 q 6 Σ ∶ ǫ ∶ − 1 ⋊ : ∼ ∶ + 1 Σ ∶ Σ ∶ + 1 59 / 97

  62. Introduction FSTs in Phonology FSTs & Reduplication 2-w ay FSTs & Reduplication Reduplication typology Conclusion References 2-way FSTs - Partial RED ● Working example: /RED+copies/ → [cop ∼ copies] Input: ⋊ c o p i e s ⋉ Output: ⋊ c o ⋊ : ⋊ :+1 C:C:+1 V:V:+1 q 0 q 1 q 2 q 3 start C:C:-1 ⋉ : ⋉ :+1 q 4 q 5 q 6 Σ ∶ ǫ ∶ − 1 ⋊ : ∼ ∶ + 1 Σ ∶ Σ ∶ + 1 60 / 97

  63. Introduction FSTs in Phonology FSTs & Reduplication 2-w ay FSTs & Reduplication Reduplication typology Conclusion References 2-way FSTs - Partial RED ● Working example: /RED+copies/ → [cop ∼ copies] Input: ⋊ c o p i e s ⋉ Output: ⋊ c o p ⋊ : ⋊ :+1 C:C:+1 V:V:+1 q 0 q 1 q 2 q 3 start C:C:-1 ⋉ : ⋉ :+1 q 4 q 5 q 6 Σ ∶ ǫ ∶ − 1 ⋊ : ∼ ∶ + 1 Σ ∶ Σ ∶ + 1 61 / 97

  64. Introduction FSTs in Phonology FSTs & Reduplication 2-w ay FSTs & Reduplication Reduplication typology Conclusion References 2-way FSTs - Partial RED ● Working example: /RED+copies/ → [cop ∼ copies] Input: ⋊ c o p i e s ⋉ Output: ⋊ c o p ⋊ : ⋊ :+1 C:C:+1 V:V:+1 q 0 q 1 q 2 q 3 start C:C:-1 ⋉ : ⋉ :+1 q 4 q 5 q 6 Σ ∶ ǫ ∶ − 1 ⋊ : ∼ ∶ + 1 Σ ∶ Σ ∶ + 1 62 / 97

  65. Introduction FSTs in Phonology FSTs & Reduplication 2-w ay FSTs & Reduplication Reduplication typology Conclusion References 2-way FSTs - Partial RED ● Working example: /RED+copies/ → [cop ∼ copies] Input: ⋊ c o p i e s ⋉ Output: ⋊ c o p ⋊ : ⋊ :+1 C:C:+1 V:V:+1 q 0 q 1 q 2 q 3 start C:C:-1 ⋉ : ⋉ :+1 q 4 q 5 q 6 Σ ∶ ǫ ∶ − 1 ⋊ : ∼ ∶ + 1 Σ ∶ Σ ∶ + 1 63 / 97

  66. Introduction FSTs in Phonology FSTs & Reduplication 2-w ay FSTs & Reduplication Reduplication typology Conclusion References 2-way FSTs - Partial RED ● Working example: /RED+copies/ → [cop ∼ copies] Input: ⋊ c o p i e s ⋉ Output: ⋊ c o p ∼ ⋊ : ⋊ :+1 C:C:+1 V:V:+1 q 0 q 1 q 2 q 3 start C:C:-1 ⋉ : ⋉ :+1 q 4 q 5 q 6 Σ ∶ ǫ ∶ − 1 ⋊ : ∼ ∶ + 1 Σ ∶ Σ ∶ + 1 64 / 97

  67. Introduction FSTs in Phonology FSTs & Reduplication 2-w ay FSTs & Reduplication Reduplication typology Conclusion References 2-way FSTs - Partial RED ● Working example: /RED+copies/ → [cop ∼ copies] Input: ⋊ c o p i e s ⋉ Output: ⋊ c o p ∼ c ⋊ : ⋊ :+1 C:C:+1 V:V:+1 q 0 q 1 q 2 q 3 start C:C:-1 ⋉ : ⋉ :+1 q 4 q 5 q 6 Σ ∶ ǫ ∶ − 1 ⋊ : ∼ ∶ + 1 Σ ∶ Σ ∶ + 1 65 / 97

  68. Introduction FSTs in Phonology FSTs & Reduplication 2-w ay FSTs & Reduplication Reduplication typology Conclusion References 2-way FSTs - Partial RED ● Working example: /RED+copies/ → [cop ∼ copies] Input: ⋊ c o p i e s ⋉ Output: ⋊ c o p ∼ c o ⋊ : ⋊ :+1 C:C:+1 V:V:+1 q 0 q 1 q 2 q 3 start C:C:-1 ⋉ : ⋉ :+1 q 4 q 5 q 6 Σ ∶ ǫ ∶ − 1 ⋊ : ∼ ∶ + 1 Σ ∶ Σ ∶ + 1 66 / 97

  69. Introduction FSTs in Phonology FSTs & Reduplication 2-w ay FSTs & Reduplication Reduplication typology Conclusion References 2-way FSTs - Partial RED ● Working example: /RED+copies/ → [cop ∼ copies] Input: ⋊ c o p i e s ⋉ Output: ⋊ c o p ∼ c o p ⋊ : ⋊ :+1 C:C:+1 V:V:+1 q 0 q 1 q 2 q 3 start C:C:-1 ⋉ : ⋉ :+1 q 4 q 5 q 6 Σ ∶ ǫ ∶ − 1 ⋊ : ∼ ∶ + 1 Σ ∶ Σ ∶ + 1 67 / 97

  70. Introduction FSTs in Phonology FSTs & Reduplication 2-w ay FSTs & Reduplication Reduplication typology Conclusion References 2-way FSTs - Partial RED ● Working example: /RED+copies/ → [cop ∼ copies] Input: ⋊ c o p i e s ⋉ Output: ⋊ c o p ∼ c o p i ⋊ : ⋊ :+1 C:C:+1 V:V:+1 q 0 q 1 q 2 q 3 start C:C:-1 ⋉ : ⋉ :+1 q 4 q 5 q 6 Σ ∶ ǫ ∶ − 1 ⋊ : ∼ ∶ + 1 Σ ∶ Σ ∶ + 1 68 / 97

  71. Introduction FSTs in Phonology FSTs & Reduplication 2-w ay FSTs & Reduplication Reduplication typology Conclusion References 2-way FSTs - Partial RED ● Working example: /RED+copies/ → [cop ∼ copies] Input: ⋊ c o p i e s ⋉ Output: ⋊ c o p ∼ c o p i e ⋊ : ⋊ :+1 C:C:+1 V:V:+1 q 0 q 1 q 2 q 3 start C:C:-1 ⋉ : ⋉ :+1 q 4 q 5 q 6 Σ ∶ ǫ ∶ − 1 ⋊ : ∼ ∶ + 1 Σ ∶ Σ ∶ + 1 69 / 97

  72. Introduction FSTs in Phonology FSTs & Reduplication 2-w ay FSTs & Reduplication Reduplication typology Conclusion References 2-way FSTs - Partial RED ● Working example: /RED+copies/ → [cop ∼ copies] Input: ⋊ c o p i e s ⋉ Output: ⋊ c o p ∼ c o p i e s ⋊ : ⋊ :+1 C:C:+1 V:V:+1 q 0 q 1 q 2 q 3 start C:C:-1 ⋉ : ⋉ :+1 q 4 q 5 q 6 Σ ∶ ǫ ∶ − 1 ⋊ : ∼ ∶ + 1 Σ ∶ Σ ∶ + 1 70 / 97

  73. Introduction FSTs in Phonology FSTs & Reduplication 2-w ay FSTs & Reduplication Reduplication typology Conclusion References 2-way FSTs - Partial RED ● Working example: /RED+copies/ → [cop ∼ copies] Input: ⋊ c o p i e s ⋉ Output: ⋊ c o p ∼ c o p i e s ⋉ ⋊ : ⋊ :+1 C:C:+1 V:V:+1 q 0 q 1 q 2 q 3 start C:C:-1 ⋉ : ⋉ :+1 q 4 q 5 q 6 Σ ∶ ǫ ∶ − 1 ⋊ : ∼ ∶ + 1 Σ ∶ Σ ∶ + 1 71 / 97

  74. Introduction FSTs in Phonology FSTs & Reduplication 2-w ay FSTs & Reduplication Reduplication typology Conclusion References 2-way FSTs - Partial RED ● Working example: /RED+copies/ → [cop ∼ copies] Input: ⋊ c o p i e s ⋉ ⋉ � Output: ⋊ c o p ∼ c o p i e s ⋊ : ⋊ :+1 C:C:+1 V:V:+1 q 0 q 1 q 2 q 3 start C:C:-1 ⋉ : ⋉ :+1 q 4 q 5 q 6 Σ ∶ ǫ ∶ − 1 ⋊ : ∼ ∶ + 1 Σ ∶ Σ ∶ + 1 72 / 97

  75. Introduction FSTs in Phonology FSTs & Reduplication 2-w ay FSTs & Reduplication Reduplication typology Conclusion References 2-way FSTs - Opacity ● RED processes may interact opaquely with phonological processes. ● Akan palatalization without RED (McCarthy and Prince, 1995; Raimy, 2000): ▸ Prose: Dorsal segments palatalize before a non-low front vowel / w i / ‘nibble’ → [ 4 i ] ▸ Rule: [+cons, +dorsal] → [+cor] / _ [+syll, -low, +front] ▸ Constraint: PAL » IDENT-IO-(-cor) 73 / 97

Recommend


More recommend