model checking finite state
play

Model Checking Finite State Finite State Model Checking Finite - PDF document

Model Checking Finite State Finite State Model Checking Finite State Systems Informationsteknologi System Description A No! Debugging Information TOOL TOOL Yes, Requirement F Prototypes C T L Executable Code Test sequences Tools:


  1. Model Checking Finite State

  2. Finite State Model Checking Finite State Systems Informationsteknologi System Description A No! Debugging Information TOOL TOOL Yes, Requirement F Prototypes C T L Executable Code Test sequences Tools: visualSTATE, SPI N , Statemate, Verilog, Formalcheck,... UC UCb

  3. From Programs to Net wor ks Net wor ks Informationsteknologi P1 :: while True do P1 :: while True do T1 : wait( turn=1 ) T1 : wait( turn=1 ) C1 : turn:=0 C1 : turn:=0 endwhile endwhile || || P2 :: while True do P2 :: while True do T2 : wait( turn=0 ) T2 : wait( turn=0 ) C2 : turn:=1 C2 : turn:=1 endwhile endwhile Mutual Exclusion Program UC UCb

  4. From Net wor k Net wor k Models to Kripke Structures Informationsteknologi I 1 I 2 I 1 I 2 t= 0 t= 1 I 1 T2 T1 I 2 T1 I 2 t= 1 I 1 T2 t= 0 t= 1 t= 0 T1 T2 I 1 C2 C1 I 2 T1 T2 t= 0 t= 0 t= 1 t= 1 T1 C2 C1 T2 t= 0 t= 1 UC UCb

  5. Kripke Structures CTL Models = UCb UC Informationsteknologi

  6. Com putation Tree Logic, CTL Clarke & Em erson 1 9 8 0 UCb Syntax UC Informationsteknologi

  7. The set of path starting in s s 3 ... p p p s 2 s 1 Path UCb s UC Informationsteknologi

  8. ) ( Form al Sem antics UCb UC Informationsteknologi

  9. inevitable possible . . . p . . . p AF p . . . p . . . CTL, Derived Operators . . . p . . . EF p . . . . . . UCb UC Informationsteknologi

  10. potentially always always . . . p p . . . EG p p . . . . . . CTL, Derived Operators . . . p p . . . p AG p p . . . p p . . . p UCb UC Informationsteknologi

  11. Theorem Informationsteknologi All operators are derivable from All operators are derivable from • EX f • EX f • EG f • EG f • E[ f U g ] • E[ f U g ] and boolean connectives and boolean connectives [ ] [ ] ( ) ≡ ¬ ¬ ¬ ∧ ¬ ∧ ¬ ¬ A U E U EG f g g f g g UC UCb

  12. p EX p 4 p,q 2 q 3 p Exam ple 1 UCb UC Informationsteknologi

  13. p 4 AX p p,q 2 q 3 p Exam ple 1 UCb UC Informationsteknologi

  14. Properties of MUTEX exam ple ? ¬ ∧ AG (C C ) 1 2 HOW to DECI DE ⇒ AG[ T AF(C )] 1 1 Informationsteknologi I N GENERAL [ ] ¬ EG C 1 [ [ [ ] ] ] ( ) ⇒ ¬ ∧ ¬ AG C A C U C A C U C 1 1 1 1 2 I 1 I 2 I 1 I 2 t= 0 t= 1 I 1 T2 T1 I 2 T1 I 2 t= 1 I 1 T2 t= 0 t= 1 t= 0 T1 T2 I 1 C2 C1 I 2 T1 T2 t= 0 t= 0 t= 1 t= 1 T1 C2 C1 T2 UCb UC t= 0 t= 1

  15. Algorithm s CTL Model Checking

  16. Fixpoint Characterizations Informationsteknologi ≡ ∨ EF EX EF p p p or let A be the set of states satisfying EF p then ≡ ∨ A EX A p in fact A is the smallest such set (the least fixpoint) UCb UC

  17. A A EX EF q p 4 ∨ q p,q 2 q 3 p Exam ple 1 UCb UC Informationsteknologi

  18. Fixed points of m onotonic functions � Let τ be a function 2 S → 2 S � Say τ is monotonic when Informationsteknologi ⊆ τ ⊆ τ implies ( ) ( ) x y x y � Fixed point of τ is y such that τ y = ( ) y � If τ monotonic, then it has − least fixed point μ y . τ ( y ) − greatest fixed point ν y . τ ( y ) UC UCb

  19. I teratively com puting fixed points � Suppose S is finite − The least fixed point μ y . τ ( y ) is the limit of Informationsteknologi ⊆ τ ⊆ τ τ ⊆ L false (false) ( (false)) − The greatest fixed point ν y . τ ( y ) is the limit of ⊇ τ ⊇ τ τ ⊇ L true (true) ( (true)) Note, since S is finite, convergence is finite UCb UC

  20. Exam ple: EF p Informationsteknologi � EF p is characterized by = μ ∨ . ( ) EF p y p EX y � Thus, it is the limit of the increasing series... p ∨ p ∨ EX p p . . . EX ( p ∨ EX p ) UC UCb

  21. Exam ple: EG p � EG p is characterized by = ν ∧ . ( ) EG p y p EX y Informationsteknologi � Thus, it is the limit of the decreasing series... p ∧ p ∧ EX p ... p EX ( p ∧ EX p ) UC UCb

  22. ) y EX ∨ q ( EF q . y = μ } } 3 3 p } , , 4 3 2 2 , , , 1 2 q Ø 1 { { { = = = EF = 0 2 3 1 A A A A Exam ple, continued p,q 2 3 q p 1 UCb UC Informationsteknologi

  23. Rem aining operators Informationsteknologi = μ ∨ AF p y . ( p AX y ) = ν ∧ . ( ) AG p y p AX y = μ ∨ ∧ ( ) . ( ( )) E p U q y q p EX y = μ ∨ ∧ ( ) . ( ( )) A p U q y q p AX y UC UCb

  24. Properties of MUTEX exam ple ? ⇒ Informationsteknologi AG[ T AF(C )] 1 1 AF(C )] 1 I 1 I 2 I 1 I 2 t= 0 t= 1 I 1 T2 T1 I 2 T1 I 2 t= 1 I 1 T2 t= 0 t= 1 t= 0 T1 T2 I 1 C2 C1 I 2 T1 T2 t= 0 t= 0 t= 1 t= 1 T1 C2 C1 T2 UC UCb t= 0 t= 1

  25. UCb UC Informationsteknologi

  26. UCb UC Informationsteknologi

  27. )) φ ( Sat ∩ } Q ∈ ' s ⇒ R ∈ ) ' s , s '.( s ∀ | s ({ UCb UC Informationsteknologi

  28. p SCC More Efficient Check SCC SCC EG p UCb UC Informationsteknologi

  29. q EG p q p,q p p Exam ple p UCb UC Informationsteknologi

  30. Reduced Model EG p p,q p p Exam ple p UCb UC Informationsteknologi

  31. Component Non trivial Connected Strongly EG p p p p Exam ple p UCb UC Informationsteknologi

  32. Properties of MUTEX exam ple ? [ ] Informationsteknologi EG ¬ C 1 I 1 I 2 I 1 I 2 t= 0 t= 1 I 1 T2 T1 I 2 T1 I 2 t= 1 I 1 T2 t= 0 t= 1 t= 0 T1 T2 I 1 C2 C1 I 2 T1 T2 t= 0 t= 0 t= 1 t= 1 T1 C2 C1 T2 t= 0 t= 1 UC UCb

  33. Properties of MUTEX exam ple ? [ ] Informationsteknologi EG ¬ C 1 I 1 I 2 I 1 I 2 t= 0 t= 1 I 1 T2 T1 I 2 T1 I 2 t= 1 I 1 T2 t= 0 t= 1 t= 0 T1 T2 I 1 C2 T1 T2 t= 0 t= 0 t= 1 Reduced Model T1 C2 which are the non-trivial SCC’s? t= 0 UC UCb

  34. Com plexity Informationsteknologi However S sys may be EXPONENTI AL in However S sys may be EXPONENTI AL in number of parallel components! number of parallel components! -- -- FI XPOI NT COMPUTATI ONS may be carried FI XPOI NT COMPUTATI ONS may be carried out using out using ROBDD’s ROBDD’s (Reduced Ordered Binary Decision Diagrams) (Reduced Ordered Binary Decision Diagrams) Bryant, 86 Bryant, 86 UC UCb

Recommend


More recommend