reduced models for domain walls in soft ferromagnetic
play

Reduced models for domain walls in soft ferromagnetic films Lukas - PowerPoint PPT Presentation

Reduced models for domain walls in soft ferromagnetic films Lukas Dring Conference on Nonlinearity, Transport, Physics, and Patterns Fields Institute, Toronto 06/10/14 Max Planck Institute for Mathematics in the Sciences Modelling


  1. Reduced models for domain walls in soft ferromagnetic films Lukas Döring Conference on Nonlinearity, Transport, Physics, and Patterns Fields Institute, Toronto 06/10/14 Max Planck Institute for Mathematics in the Sciences

  2. Modelling ferromagnetic thin films Ω ⊂ R 3 sample m : Ω → S 2 magnetization “Elementary magnets” � Unit-length vector field 1

  3. Magnetization patterns in thin-film ferromagnets R. Schäfer J. Steiner, F. Otto Magnetization patterns in Permalloy films Numerical simulation of domain walls 2

  4. Landau-Lifshitz (free) energy Observed patterns: Local minimizers m : Ω ⊂ R 3 → S 2 of � E ( m ) = d 2 |∇ m | 2 dx Exchange energy Ω � � ∇ · ( h str + 1 Ω m ) = 0 R 3 | h str | 2 dx + Stray-field energy ∇ × h str = 0 � 1 − ( e · m ) 2 dx Anisotropy energy for e ∈ S 2 , Q ≪ 1 + Q Ω � − 2 h ext · m dx Zeeman energy Ω Well-accepted Non-convex Non-local 3

  5. Landau-Lifshitz (free) energy Observed patterns: Local minimizers m : Ω ⊂ R 3 → S 2 of � E ( m ) = d 2 |∇ m | 2 dx Exchange energy Ω � � ∇ · ( h str + 1 Ω m ) = 0 R 3 | h str | 2 dx + Stray-field energy ∇ × h str = 0 � 1 − ( e · m ) 2 dx Anisotropy energy for e ∈ S 2 , Q ≪ 1 + Q Ω � − 2 h ext · m dx Zeeman energy Ω Well-accepted Non-convex Non-local 3

  6. Landau-Lifshitz (free) energy Observed patterns: Local minimizers m : Ω ⊂ R 3 → S 2 of � E ( m ) = d 2 |∇ m | 2 dx Exchange energy Ω � � ∇ · ( h str + 1 Ω m ) = 0 R 3 | h str | 2 dx + Stray-field energy ∇ × h str = 0 � 1 − ( e · m ) 2 dx Anisotropy energy for e ∈ S 2 , Q ≪ 1 + Q Ω � − 2 h ext · m dx Zeeman energy Ω Well-accepted Non-convex Non-local 3

  7. Outline Single wall in infinitely extended film Periodic domain pattern with interacting wall tails

  8. Wall patterns on cross-section of film Wall angle α Material anisotropy } Film “Easy axis” e thickness 2 t x 3 x 2 x 1 External magnetic field h ext 2 α m 2 Anisotropy Q and external field h ext e m 1 determine wall angle α . h ext Wall angle α and film thickness t determine wall type. 4

  9. m 2 Three wall types − sin α 0 sin α Symmetric Néel wall m 3 m 1 Asymmetric Néel wall m 3 m 1 Asymmetric Bloch wall m 3 m 1 5

  10. m 2 Three wall types − sin α 0 sin α Symmetric Néel wall m 3 m 1 Asymmetric Néel wall m 1 logarithmic tails m 3 m 1 ∼ t core Q ∼ d 2 Asymmetric Bloch wall t ln x 1 x 1 ≈ 1 m 3 m 2 m 1 m 1 5

  11. m 2 Three wall types − sin α 0 sin α Symmetric Néel wall m 3 m 1 Asymmetric Néel wall m 3 m 1 Asymmetric Bloch wall m 3 m 1 Aim: Understand transitions between wall types for Q ≪ 1 5

  12. m 2 Three wall types − sin α 0 sin α Symmetric Néel wall Wall types in Permalloy films m 3 Hubert, Schäfer: Magnetic Domains, Springer, 1998 m 1 Symmetric Néel Wall angle Asymmetric Néel Asymmetric Néel wall m 3 m 1 Cross-tie Asymmetric Bloch wall Asymm. Bloch Film thickness m 3 m 1 Aim: Understand transitions between wall types for Q ≪ 1 5

  13. The critical regime: Optimal mix ... � t 2 ln − 1 t 2 if t 2 d 2 ≪ ln 1 d 2 Q , Q , Otto, ’02 min E 2D ( m ) ∼ if t 2 d 2 , d 2 ≫ ln 1 Q . m wall of angle π 2 t 2 d 2 = λ ln 1 What happens in critical regime: Q ? Optimal wall profile for angle α = asymm. “2 1 2 -d” core long-range 1-d tails m 1 = cos θ � � + � cos θ � cos θ − sin θ + sin θ 0 0 m 1 = cos α = = m m Optimal mix: θ α − θ Quantification of optimal mix difficult to access by brute-force numerics. ...of core and tails 6

  14. Outline Single wall in infinitely extended film Periodic domain pattern with interacting wall tails

  15. Expected behavior: Large domain width... x 2 H = 0 x 1 m 1 ¯ x 1 cos θ = H 0 ∼ t ∼ t core equilibrium core w x 3 x 1 ...similar to one-wall case 7

  16. Expected behavior: Large domain width... x 2 H = 0 . 2 x 1 m 1 ¯ cos θ = H x 1 0 ∼ t ∼ t core equilibrium core w x 3 x 1 ...similar to one-wall case 7

  17. Expected behavior: Large domain width... x 2 H = 0 . 4 x 1 m 1 ¯ cos θ H x 1 0 ∼ t ∼ t ∼ t ∼ t Q Q core equilibrium core tail tail w x 3 x 1 ...similar to one-wall case 7

  18. Expected behavior: Small domain width... x 2 H = 0 x 1 m 1 ¯ x 1 cos θ = H 0 ∼ t ∼ t equilibrium core equilibrium core equilibrium w w w x 3 x 1 ...leads to coalescing tails 8

  19. Expected behavior: Small domain width... x 2 H = 0 . 2 x 1 m 1 ¯ cos θ = H x 1 0 ∼ t ∼ t equilibrium core equilibrium core equilibrium w w w x 3 x 1 ...leads to coalescing tails 8

  20. Expected behavior: Small domain width... x 2 H = 0 . 4 x 1 m 1 ¯ cos θ H x 1 0 � t � t � t ∼ t ∼ t Q Q Q core core tails tails tails w w w x 3 x 1 ...leads to coalescing tails 8

  21. Strongly hysteretic transition between asym. walls... Elongated CoFeB elements 2 t = 120nm, Q = 1 . 55 · 10 − 3 , d = 3 . 86 ± 0 . 3nm. Origin of large jump in hard-axis magnetization? Domain width w x 1 x 2 ...due to interacting tails? C. Hengst, IFW Dresden 9

  22. Just a few building blocks... m 1 ¯ cos θ cos α x 1 0 w tails w tails ∼ t ∼ t core core tail domain tail w x 3 x 1 E 2D = Exchange energy + Stray-field energy + Bulk energy � � � � 1 � 2 dx 1 ≈ d 2 |∇ m core | 2 dx + 2 t 2 � | d 2 m tails dx 1 | θ 1 � d ) 2 = λ ln 1 ( m tails − H ) 2 dx 1 , with ( t + 2 Qwt − Q . 1 Interesting regime: Qwt = κλ d 2 ; optimal w tails = w 2 . ...combined in an optimal way 10

  23. Just a few building blocks... m 1 ¯ cos θ cos α x 1 0 w tails w tails ∼ t ∼ t core core tail domain tail w x 3 x 1 E 2D = Exchange energy + Stray-field energy + Bulk energy ≈ d 2 �� |∇ m core | 2 dx + 2 πλ ( cos θ − cos α ) 2 θ + 2 κλ ( cos α − H ) 2 � d ) 2 = λ ln 1 with ( t , Q . w κ Q ; optimal w tails = w Interesting regime: t = 2 . Q ln 1 ...combined in an optimal way 10

  24. Just a few building blocks... m 1 ¯ cos θ cos α x 1 0 w tails w tails ∼ t ∼ t core core tail domain tail w x 3 x 1 =: E asym ( θ ) � �� � � � d − 2 min |∇ m | 2 dx m E 2D ( m ) ≈ min min θ m stray-field free wall of angle θ π ( cos α − H ) 2 �� ( cos θ − cos α ) 2 + κ � + 2 πλ min α d ) 2 = λ ln 1 as Q → 0, for ( t t Q , w = κ Q . Q ln 1 ...combined in an optimal way 10

  25. Reduced model for the structure of domain walls Theorem ( κ = ∞ : D., Ignat, Otto; κ < ∞ : D.) There exist critical points m Q of E 2D , such that for Q → 0 , λ the relative film thickness, κ the relative domain width: � π + κ ( cos θ − H ) 2 � d − 2 E 2D ( m Q ) ≈ min κ E asym ( θ ) + 2 πλ θ ∈ [ 0 , π 2 ] and � π − m 1 , Q dx ≈ cos α opt = H + π + κ ( cos θ opt − H ) . domain ◮ Proof via Γ -conv. (minimize E 2D over periodic m ). ◮ Compactness requires “shifting argument” to ensure that { m Q } Q converges to a domain wall . 11

  26. Stray-field free core: Néel and Bloch... �� � � � m : Ω → S 2 has wall angle θ, |∇ m | 2 dx E asym ( θ ) := min � with ∇· m ′ = 0 in Ω , m 3 = 0 on ∂ Ω � Ω 1 1 1 0.5 0.5 0.5 0 0 0 x 3 x 3 x 3 -0.5 -0.5 -0.5 deg = 0 -1 -1 -1 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 m 3 x 1 x 1 x 1 30 m 1 1 25 0.5 ? Asym. Bloch 0 x 3 20 -0.5 -1 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 E asym ( θ ) 15 x 1 deg = ± 1 1 10 0.5 0 x 3 Asym. Néel ≈ -0.5 5 4 π sin 2 θ + 148 35 π sin 4 θ ≈ -1 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 D., Ignat x 1 0 0 π /4 π /2 wall angle θ ...two topologically distinct wall types 12

  27. Comparison of theory and experiments Co 40 Fe 40 B 20 films (lateral width 60 µ m) with parameters thickness/nm 102 153 212 Q / 10 − 3 1 . 36 0 . 93 1 . 16 µ 0 M s = 1 . 48T (measured in a single film of small thickness) d = 3 . 86nm (from Conca et al., J. Appl. Phys., 2013) For 2 t = 102nm: 0.6 0.6 w=7.5 µ m w=6.0 µ m w=8.2 µ m w=7.0 µ m w=9.0 µ m w=8.4 µ m 0.5 0.5 w=11.6 µ m w=13.6 µ m w=17.4 µ m 0.4 0.4 Magnetization Magnetization 0.3 0.3 0.2 0.2 0.1 0.1 0 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 Reduced external field Reduced external field Experiments: C. Hengst 13

  28. Comparison of theory and experiments Co 40 Fe 40 B 20 films (lateral width 60 µ m) with parameters thickness/nm 102 153 212 Q / 10 − 3 1 . 36 0 . 93 1 . 16 µ 0 M s = 1 . 48T (measured in a single film of small thickness) d = 3 . 86nm (from Conca et al., J. Appl. Phys., 2013) a) α = 0° 45° w 90° 30 µm stripe axis b) H a α H dem 20 µm Experiments: C. Hengst 13

  29. Further questions x 1 Transversal (in)stability and x 2 path to cross-tie wall 1 0.5 Stability of asymmetric walls x 3 0 -0.5 1 -1 -2 -1.5 -1 -0.5 0 0.5 0.5 1 1.5 2 x 1 0 x 3 -0.5 -1 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 x 1 Comparison of critical θ wall angle α ∗ ≈ arccos ( 1 − 2 λ ) t 2 ( λ ≈ Q ) to experiments d 2 ln 1 α α ∗

Recommend


More recommend