Recent Heavy Flavor Results from PHENIX Kazuya Nagashima (Hiroshima Univ. / RIKEN)
ü Introduction of Heavy Flavor Probe Hadronization > produced in initial stage time - coalescence ( τ 0 = 1/2m c,b ) - fragment. > probe full time evolution B $ B % > conserved HF number ! b b QGP QGP dynamics - energy loss Generation - τ 0 = 1/2m c,b - flow and thermalization? - pQCD-NLO z Modification of phase space Au Au dist. reflects QGP dynamics! 2 K. Nagashima - QNP 2018 - Nov. 16, 2018
ü Previous Heavy Flavor Measurement Nuclear modification factor of HF→e Azimuthal anisotropy v 2 of HF→e 0.18 2.2 2 AA 0-10% central. Au+Au, s =200 GeV Azimuthal anisotoropy v Nuclear modification factor R min. bias Au+Au, s =200 GeV NN NN 2 Phys.Rev.Lett.98,172301 0.16 Phys.Rev.Lett.98,172301 → → c+b e c+b e 1.8 0.14 (dAu, s =200 GeV) → NN c+b e 1.6 0.12 1.4 0.1 1.2 0.08 1 0.06 0.8 0.04 0.6 0.02 0.4 0 0.2 − 0.02 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 1 2 3 4 5 6 7 8 9 p [GeV/c] p [GeV/c] T T - Strong suppression in Au+Au - Large v 2 of HF→e in Au+Au - Large CNM in d+Au - v 2 of HF→e in d+Au? - Quark mass dependence? - Quark mass dependence? 3 K. Nagashima - QNP 2018 - Nov. 16, 2018
ü Previous heavy flavor measurement Nuclear modification factor of HF→e Azimuthal anisotropy v 2 of HF→e 2.2 0.18 2 Azimuthal anisotoropy v 0-10% Au+Au, s =200 GeV PH ENIX min. bias Au+Au, s =200 GeV NN NN 2 preliminary Data 2004+2014, |y|<0.35 0.16 Phys.Rev.Lett.98,172301 → 1.8 c+b e (Phys.Rev.C 84,044905) 0.14 → → c e p+p from e-h correlations c+b e 1.6 e) Phys.Rev.Lett.105,202301 → 0.12 b e → 1.4 0.1 e, b 1.2 0.08 → 1 (c 0.06 0.8 AA 0.04 R 0.6 0.02 0.4 0 0.2 − 0.02 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 1 2 3 4 5 6 7 8 9 p [GeV/c] p [GeV/c] T T - Strong suppression in Au+Au - Large v 2 of HF→e in Au+Au - Large CNM in d+Au - v 2 of HF→e in d+Au? - Quark mass dependence? - Quark mass dependence? 4 K. Nagashima - QNP 2018 - Nov. 16, 2018
ü Heavy Flavor Measurement at PHENIX [Mid-rapidity] [Forward-rapidity] electrons at Central arm muons at Muon arm (with RICH and EMCal) absorber: 7.2 X int φ = π, |η| = 0.35 φ = 2π, 1.2 < |η| < 2.2 e - e + μ - μ + [Collision systems] p+p, p+Al, p+Au, d+Au, 3 He+Au, AuAu, CuAu [Collision energies] 20 ~ 200 ~ 510 GeV/c 5 K. Nagashima - QNP 2018 - Nov. 16, 2018
ü Silicon Vertex Detector @ PHENIX [VTX] - 2 pixel layers + 2 strip layers (σ φ = 14.4 μm) (σ φ = 23 μm) [FVTX] - 4 strip layers (σ φ = 75 μm) Displaced vertex analysis 6 K. Nagashima - QNP 2018 - Nov. 16, 2018
Heavy Flavor Results in Small System (p+p) → production mechanism and baseline 7 K. Nagashima - QNP 2018 - Nov. 16, 2018
ü Invariant Yield of c→e and b→e in p+p DCA T distribution Invariant yield of c→e and b→e 2 − 10 ] -2 dy) [mb (GeV/c) p+p at s = 200 GeV NN 3 − | | < 0.35 10 PH ENIX η preliminary 4 − 10 T /dp 5 − 10 σ 2 ) d 6 − 10 T p π (1/2 7 10 − 8 − 10 c e + b e → → 9 − 10 b e → c e → 10 Inclusive HF Electrons [PRC 84, 044905] − 10 2.4 1 2 3 4 5 6 7 8 9 e) 2.2 → 2 Data / (c+b 1.8 1.6 1.4 1.2 1 0.8 0.6 1 2 3 4 5 6 7 8 9 Electron p [GeV/c] T - Displaced vertex analysis for single electrons at mid-rapidity - Simultaneous fit to DCA T distribution and invariant yield - Unfold x-section of c, b hadrons, refold invariant yield of c, b→e 8 K. Nagashima - QNP 2018 - Nov. 16, 2018
! and # ̅ ü Production Mechanism of ! ̅ # Pair angle distribution is sensitive to production mechanism of HF Fit with 3 templates (from PYTHIA) Pair creation Flavor excitation Gluon splitting [ c% c production] > Flavor excitation dominates > Wider distribution than b% b → NLO process is higher [ b% b production] > Pair creation dominates 9 K. Nagashima - QNP 2018 - Nov. 16, 2018
Heavy Flavor Results in Small System (d+Au) → Flow in Small System 10 K. Nagashima - QNP 2018 - Nov. 16, 2018
ü Single muon measurement in d+Au - Single muons are measured at both Au-direction and d-direction. - 0-20% high-multiplicity events #$ analysis. are used for ! " - Main background sources: + hadron decay μ + punch thorough hadrons + J/ψ decay μ #$ is calculated by - ! " 1 #$ = )*+,. − 1 − ' /0 ×! " 23 ) ! " (! " ' #$ 11 K. Nagashima - QNP 2018 - Nov. 16, 2018
ü Heavy Flavor Anisotropic Flow in d+Au Au-direction d-direction 0.3 0.3 0-20% d+Au s =200 GeV 0-20% d+Au s =200 GeV NN NN µ µ - - from open heavy flavor decays from open heavy flavor decays 0.25 0.25 } η η < -3.1 -2.0 < < -1.4 1.4 < < 2.0 0.2 0.2 Sys = 1.9% Sys = 1.9% Global Global η -3.9 < 0.15 0.15 {EP 0.1 0.1 2 v 0.05 0.05 PH ENIX preliminary 0 0 0.5 1 1.5 2 2.5 0.5 1 1.5 2 2.5 p [GeV/c] p [GeV/c] T T #$%→' in small collision system. Measured non-zero ! " - heavy flavor flows in small collision system? 12 K. Nagashima - QNP 2018 - Nov. 16, 2018
ü Heavy Flavor Anisotropic Flow in d+Au Au-direction d-direction 0.3 0.3 0-20% d+Au s =200 GeV 0-20% d+Au s =200 GeV NN NN µ µ - - from open heavy flavor decays from open heavy flavor decays 0.25 0.25 Charged hadrons Charged hadrons } η η < -3.1 -2.0 < < -1.4 1.4 < < 2.0 0.2 0.2 Sys = 1.9% Sys = 1.9% Global Global η -3.9 < 0.15 0.15 {EP 0.1 0.1 2 v 0.05 0.05 PH ENIX preliminary 0 0 0.5 1 1.5 2 2.5 0.5 1 1.5 2 2.5 p [GeV/c] p [GeV/c] T T #$%→' in small collision system. Measured non-zero ! " - heavy flavor flows in small collision system? #$%→' ~ ! " ( (not direct comparison) - similar order of magnitude, ! " → One of the key to understand flow in small system 13 K. Nagashima - QNP 2018 - Nov. 16, 2018
Heavy Flavor Results in Large System (Au+Au) → HF dynamics in QGP 14 K. Nagashima - QNP 2018 - Nov. 16, 2018
ü Invariant Yield of c→e and b→e in Au+Au DCA T distribution Invariant yield − 2 10 4 10 Au+Au, s =200 GeV NN Data min. bias, |y|<0.35 → − c+b e (Data) 3 10 Data 2014 Background ] -2 3 [(GeV/c) − 4 10 10 [2.00-2.20 GeV/c] − b/(c+b)=0.31 5 10 counts 2 y 10 d − 6 10 T p N/d − 7 10 2 )d 10 T p − 8 10 π (1/2 − Au+Au, s =200 GeV 9 10 1 NN minimum bias, |y|<0.35 − stat 10 10 2 σ (Data - Re-fold)/ 2 Data/Re-fold 0 1 − 2 0 − − 0.1 0.05 0 0.05 0.1 1 2 3 4 5 6 7 8 9 e p [GeV/c] DCA [cm] T T - Displaced vertex analysis for single electrons at mid-rapidity - Simultaneous fit to DCA T distribution and invariant yield 15 K. Nagashima - QNP 2018 - Nov. 16, 2018
ü Invariant Yield of c→e and b→e in Au+Au DCA T distribution Invariant yield − 2 10 4 10 Au+Au, s =200 GeV Data NN min. bias, |y|<0.35 → − c+b e (Data) 3 10 Re-fold Data 2014 ] → -2 Charm c+b e (Re-fold) 3 [(GeV/c) − 4 10 10 Bottom → [2.00-2.20 GeV/c] c e (Unfolded) − Background b/(c+b)=0.31 5 10 → counts b e (Unfolded) 2 y 10 d − 6 10 T p N/d − 7 10 2 )d 10 T p − 8 10 π (1/2 − Au+Au, s =200 GeV 9 10 1 NN minimum bias, |y|<0.35 − stat 10 10 2 σ (Data - Re-fold)/ 2 Data/Re-fold 0 1 − 2 0 − − 0.1 0.05 0 0.05 0.1 1 2 3 4 5 6 7 8 9 e p [GeV/c] DCA [cm] T T - Displaced vertex analysis for single electrons at mid-rapidity - Simultaneous fit to DCA T distribution and invariant yield - Unfold yield of c, b hadrons, refold invariant yield of c, b→e 16 K. Nagashima - QNP 2018 - Nov. 16, 2018
ü Extraction of v 2 for c→e and b→e DCA T distribution 0.25 4 10 HF Au+Au, s =200 GeV Data Min. bias Au+Au s =200GeV NN 2 min. bias, |y|<0.35 e v NN Re-fold e v from open heavy flavor Data 2014 2 0.2 Charm 3 |DCA|<0.02 charm enriched 10 Bottom [2.00-2.20 GeV/c] 0.03<|DCA|<0.1 bottom enriched Background b/(c+b)=0.31 0.15 counts 2 10 0.1 10 0.05 1 0 stat 2 PH ENIX σ (Data - Re-fold)/ preliminary -0.05 0 1 1.5 2 2.5 3 3.5 4 4.5 5 p [GeV/c] − T 2 Extraction of c→e and b→e v 2 − − 0.1 0.05 0 0.05 0.1 DCA [cm] T # $%#& = ( # + ( + ×! " + + ( +, ×! " +, ! " # ×! " Divide DCA distribution to + $%#& = ( # + ( + ×! " + + ( +, ×! " +, c rich region : |DCA| < 200μm ! " # ×! " b rich region : 300 < |DCA| < 1000μm >> Solve simultaneous equations! 17 K. Nagashima - QNP 2018 - Nov. 16, 2018
Recommend
More recommend