rare elements in magnetic materials
play

Rare Elements in Magnetic Materials Terunobu Miyazaki WPI Advanced - PowerPoint PPT Presentation

JST Japan-EU workshop, Nov. 22, 2011 Rare Elements in Magnetic Materials Terunobu Miyazaki WPI Advanced Institute Materials Research Tohoku University My Research Experience 1972-1975 : hcp Ni, fcc Co, Fe-Co-Ni 1975-1985 : Rapidly


  1. JST Japan-EU workshop, Nov. 22, 2011 Rare Elements in Magnetic Materials Terunobu Miyazaki WPI Advanced Institute Materials Research Tohoku University

  2. My Research Experience • 1972-1975 : hcp Ni, fcc Co, Fe-Co-Ni • 1975-1985 : Rapidly quenched amorphous materials, Sndust (Fe-Al-Si) alloys • 1985-1991 : Amorphous thin films (Gd-Co, ・・・), Spin- glass (Fe-based alloy), Magnetiresistance (Fe,Co,Ni) • 1991-1993 : Tunnel magnetoresistance, Soft magnetic materials, Multilayer films, Kerr effect of alloy films • 1993-2007 :Tunnel magnetoresistance, (Magnetism of organic materials), (Permanent magnet), HDD, MRAM • 2007- : MRAM materials, Organic/In-organic hybrid materials

  3. Price of the Elements used for Magnetic Materials Elements Price ($/kg) Elements Price ($/kg) B 0.65 Ga 530 N Ge 1240 Mg 2.7 (2005) Ru 1400 (2011) Al 2.2 (2010) Pd 11500 Si 2.49 Ir 37000 (2011) V 16 Pt 42100 45 → 460 Cr 7.6 Nd Mn 0.003 Sm 250 Fe 0.06 Gd 140 800 → 4900 Co 67 Tb 150 → 3800 Ni 37 Dy Zn 3.2 At 2007

  4. Price of rare earth elements Dy Nd Nd 2005 ~ 2010 レアメタルニュース ( 発行元 : アルム出版社 )2010 年 03 月 24 日 p01 抜粋 Tb Dy June 2010 ~ August 2011

  5. : used for magnetic materials

  6. Classification of magnetic materials • Spintronics materials : Fe-Co-B, Heusler alloys (Co 2 MnSi), Pt-Mn, Ir-Mn, Co-Pt, Fe-Pt, CoCrPt , Mn-Ga • Hard magnetic materials : NdFeB+Dy, SmCo, FeSmN • Soft magnetic materials : Fe-Ni, Permendur (CoFe), Fe-based amorphous alloys, Sendust (Fe-Al-Si) Except oxides

  7. Staff of Spintronics Materials Group and Collaboration TOSHIBA T. Miyazaki S. Mizukami Materials Dept. Appl. physics in Phys RIEC AIMR T. Kubota Q. Ma

  8. Our Target Finding a new material which will be used as the electrodes of MTJ in high density MRAM M s < 300 Gauss K ⊥ = 1x10 7 erg/cc α < 0.01 TMR ratio > 100 %

  9. Spintronics Materials for Gbit STT-MRAM Large TMR magnetic device friction Thermal fluctuation (Large write MOS-FET (Memory is lost ) current) Large perpendicular magnetic anisotropy Low magnetic friction α < 0.01 K ⊥ > 10 Merg/cc

  10. 0 Kerr signal ( arb. unit ) 3 0 0 P e r p e n d i c u l a r -10 2 0 0 -20 Kerr signal (arb. unit) M ( emu/cc ) 1 0 0 Pump laser fluence -30 I n - P l a n e 0.12 (mJ/cm 2 ) 0 -40 0.43 - 1 0 0 0.28 -50 - 2 0 0 0.83 -60 - 3 0 0 0 20 40 60 80 - 5 0 - 2 5 0 2 5 5 0 H ( k O e ) Delay time (ps) Delay time (ps) Typical magnetic and transport properties for Mn-Ga thin film (green Material) developed in our group Large ( K ⊥ =1 - 2x10 7 TMR ratio Small damping constant erg/cc ) perpendicular We must improve this α= 0.01 - 0.02 anisotropy point Wu et al, APL 94, 122503 (2009), Mizukami et al, PRL 106, 117201 (2011), Kubota et al, APEX 4, 043002 (2011)

  11. Perpendicular magnetic anisotropy, K ⊥ > 10 Merg/cc Co 5 Sm FePt CoPt Fe 14 Nd 2 B Co 3 Pt FePd CoCrPt D. Weller et al. IEEE Trans Mag. 36 10 (2000) Noble or Rare-earth metals are crucial ?

  12. Mn-Ga alloys exhibit large- K ⊥ as well as low- α [Co/X] N (X=Ni,Pd,Pt) α or α eff. 10 -1 Mn FePt Ga Mn MgO/CoFeB CoCrPt 10 -2 Mn-Ga 10 -2 10 -1 10 0 10 1 eff (Merg/cm 3 ) K u And also low-cost

  13. Comparison Comparison between experiments and theory between experiments and theory 3 b 2 K u (meV/unit cell) K u ( q ) (meV/cell) minority 10 Density of states 1 ( 1/eV unit cell) 0 0 Ga Mn I Mn II -1 Mn 3 Ga -2 -10 majority -3 40 45 50 55 -6 -4 -2 0 2 q (1/cell) E-E F (eV) Electron number per cell LMTO-ASA with LDA approximation Calc. including spin-orbit interaction Mn II : 2.48 µ B K ⊥ = 26 Merg/cc M s = 306 emu/cc Mn I : -3.09 µ B Roughly consistent with exp. values S. Mizukami et al., Phys. Rev. Lett. 106, 117201 (2011).

  14. Possible story ? story ? Possible Small damping is only around E F , (between DOS peaks) 2 ξ ( ) α ∝ SO D E F 2 ∆ E small 2 ξ ∝ SO K large ⊥ ∆ E (still under investigation)

  15. Physics of Magnetic Materials Group (Yamagata University) Prof Kato ・ Development technology for reducing Dy usage in a rare-earth magnet METI-NEDO Project : Rare Metal Substitute Materials Development Project (H19 - H23) Yamagata Univ. + 2 Univ. +2 Institute + 4 Companies ・ Coercivity enhancement in bulk Nd-Fe-B by high-magnetic field process ・ Coercivity mechanism study by using model- interface sample made by thin-film process

  16. Progress of energy product (BH) max

  17. Main use and corresponding magnetic properties of Nd-Fe-B permanent magnet Operating Temperature ( ℃ ) 50 150 250 MRI, Speaker (Dy 0%) HDD, CD 50 Digital Camera (BH) max (MGOe) 45 (Dy 5%) ABS sensor OA / FA motor 40 Servo motor Robot, Generator 35 Air Conditioning Electric Vehicle (Dy 10%) 30 10 15 20 25 30 H c (kOe) required at 20 o C Natural Abundance : Dy << Nd

  18. How to increase the coercive force without Dy? T c =310 ˚ C Nd-Fe-B permanent magnet Dy 10% Dy-free

  19. Two approaches to increase Hc of Nd-Fe- B magnet without Dy Ⅰ.Reduction of particle size Ⅱ.Control of particle surface Disordered Reverse Uniform surface domain domain Single domain Multi-domain 90 Interface (kOe) control Hc 0.3 Particle size (μm) H c ( Dy-free Nd-Fe-B ) ≒ 10 kOe This value is approximately 10 % of the theoretically expected value

  20. H c enhancement in Nd-Fe-B film by Nd capping t NdFeB (nm) t NFB (nm) Nd 2 Fe 14 B Nd overlayer single crystal 70 5 7 20 多 underlayer with Nd overlayer + post-annealing H c (kOe) Δ H c = 10 kOe Nd 2 Fe 14 B single crystal 多 without Nd overlayer underlayer D grain (nm)

  21. H c versus size 100 (YU) Coercivity H c (kOe) Sintered Magnets (Intermetallics ) 10 Interface control size control 1 1 0.01 0.1 1 10 100 21 Grain Size D ( μ m)

  22. Effect of Strong Field Gradient on H c in the grain boundary diffusion process Problems of Dy diffusion process ・ Max. diffusion depth : 3- 5 mm ・ Strong Dy-content gradient from surface to inside Any effect of mag. force by field gradient ?

  23. Dy diffusion experiment in strong field gradient 18 T superconducting magnet Cu 0.1% Nd-Fe-B Dy(3 μ m) electric furnace T diffusion = 850 ˚ C, 60 min magnetic force: F ∝ H•dH / dz *annealed at T a =500 ˚ C after diffusion

  24. S Dy ( K Dy < 0) c Dy ( K Dy > 0) Nd ( K Nd > 0) 土浦ら、固体物理 14 , 677 (2009), まてりあ 50 , 389 (2011)

  25. 1.5 Dy layer = 10 1.0 3 1 0.5 M / M s 0.0 -0.5 -1.0 -1.5 -2.0-1.5-1.0-0.5 0.0 0.5 1.0 1.5 2.0 H / H k

  26. 1.2 J = 9.6 meV 1 0.8 H c / H k J = 4.8 meV 0.6 0.4 0.2 0 0 2 4 6 8 10 12 14 16 18 20 Dy

  27. How to get replaced materials ? Morphology Change Technical Methods • Multilayer film • Rapid quenching • Fine particle • Sputtering • Hybrid • MBE • Nano-porous • Atomic layer deposition • Interface control • High magnetic field processing • Topological control • ・・・ • ・・・ We need beyond We must find further these changes other new methods

Recommend


More recommend