randomness complexity of private circuits for
play

Randomness Complexity of Private Circuits for Multiplication Sonia - PowerPoint PPT Presentation

Randomness Complexity of Private Circuits for Multiplication Sonia Belad, Fabrice Benhamouda, Alain Passelgue , Emmanuel Prouff, Adrian Thillard, Damien Vergnaud brief introduction - side-channel attacks - masking - -probing model


  1. Randomness Complexity of Private Circuits for Multiplication Sonia Belaรฏd, Fabrice Benhamouda, Alain Passelรจgue , Emmanuel Prouff, Adrian Thillard, Damien Vergnaud

  2. brief introduction - side-channel attacks - masking - ๐‘’ -probing model 1/16

  3. key-idea: for security at order ๐‘’ , split sensitive data ๐‘ฆ into ๐‘’ + 1 ran andom variables (shares) s.t. ๐‘ฆ = ๐‘ฆ 0 โŠ• ๐‘ฆ 1 โŠ• โ‹ฏ โŠ• ๐‘ฆ ๐‘’ 2/16

  4. key-idea: for security at order ๐‘’ , split sensitive data ๐‘ฆ into ๐‘’ + 1 ran andom variables (shares) s.t. ๐‘ฆ = ๐‘ฆ 0 โŠ• ๐‘ฆ 1 โŠ• โ‹ฏ โŠ• ๐‘ฆ ๐‘’ needs for a lot of randomness 2/16

  5. randomness in cryptography used everywhere: - keys - RSA prime factors - ... 3/16

  6. randomness in cryptography used everywhere: - keys - RSA prime factors - ... strong properties: - statistically random - uniformly distributed - independent - ... 3/16

  7. where does it come from? 4/16

  8. where does it come from? in the real world: natural randomness 4/16

  9. where does it come from? in the real world: natural randomness in practice: - need special hardware - slow - bias or uneven distribution 4/16

  10. where does it come from? in the real world: natural randomness randomness should be considered as a resource, in practice: - need special hardware like space and time - slow - bias or uneven distribution 4/16

  11. private circuits ๐‘”: 0,1 ๐‘œ โ†’ 0,1 ๐‘› ๐‘  ๐‘  ๐‘  0,1 ๐‘œ โ€ฒ 0,1 ๐‘› โ€ฒ 1 2 ๐‘† โ€ฆ ๐œ 2 ๐œ 1 ๐œ โ„“ โ€ฆ circuit . encoder decoder . . . ๐‘ฆ ๐‘”(๐‘ฆ) ๐ท . . . ๐ฝ ๐‘ƒ . . . . . correctness: ๐‘ƒ ๐ท ๐ฝ ๐‘ฆ; ๐œ ; ๐‘  = ๐‘” ๐‘ฆ , โˆ€ ๐‘ฆ, ๐œ, ๐‘  privacy: for any set ๐‘„ of ๐‘’ wires in ๐ท and for all ๐‘ฆ, ๐‘ง โˆˆ 0,1 ๐‘œ : ๐‘’ -priv {๐ท ๐‘„ (๐ฝ ๐‘ฆ; ๐œ ; ๐‘ )} ๐œ,๐‘  = {๐ท ๐‘„ (๐ฝ ๐‘ง; ๐œ ; ๐‘ )} ๐œ,๐‘  5/16

  12. private circuits ๐‘”: 0,1 ๐‘œ โ†’ 0,1 ๐‘› ๐‘  ๐‘  ๐‘  0,1 ๐‘œ โ€ฒ 0,1 ๐‘› โ€ฒ 1 2 ๐‘† โ€ฆ ๐œ 2 ๐œ 1 ๐œ โ„“ โ€ฆ circuit . encoder decoder . . . ๐‘ฆ ๐‘”(๐‘ฆ) ๐ท . . . ๐ฝ ๐‘ƒ . . . . . 5/16

  13. private circuits ๐‘”: 0,1 ๐‘œ โ†’ 0,1 ๐‘› ๐‘  ๐‘  ๐‘  0,1 ๐‘› โ€ฒ 1 2 ๐‘† โ€ฆ ๐œ 2 ๐œ 1 ๐œ โ„“ โ€ฆ circuit . encoder decoder 0,1 ๐‘œ โ€ฒ . . . ๐‘ฆ ๐‘”(๐‘ฆ) ๐ท . . . ๐ฝ ๐‘ƒ . . . . . 5/16

  14. private circuits ๐‘”: 0,1 ๐‘œ โ†’ 0,1 ๐‘› ๐‘  ๐‘  ๐‘  1 2 ๐‘† โ€ฆ ๐œ 2 ๐œ 1 ๐œ โ„“ โ€ฆ circuit . encoder 0,1 ๐‘› โ€ฒ decoder . . . ๐‘ฆ ๐‘”(๐‘ฆ) ๐ท . . . ๐ฝ ๐‘ƒ . . . . . 5/16

  15. private circuits ๐‘”: 0,1 ๐‘œ โ†’ 0,1 ๐‘› ๐‘  ๐‘  ๐‘  1 2 ๐‘† โ€ฆ ๐œ 2 ๐œ 1 ๐œ โ„“ โ€ฆ circuit . encoder decoder . . . ๐‘ฆ ๐‘”(๐‘ฆ) ๐ท . . . ๐ฝ ๐‘ƒ . . . . . 5/16

  16. private circuits ๐‘”: 0,1 ๐‘œ โ†’ 0,1 ๐‘› ๐‘  ๐‘  ๐‘  1 2 ๐‘† โ€ฆ ๐œ 2 ๐œ 1 ๐œ โ„“ โ€ฆ circuit . encoder decoder . . . ๐‘ฆ ๐‘”(๐‘ฆ) ๐ท . . . ๐ฝ ๐‘ƒ . . . . . correctness: ๐‘ƒ ๐ท ๐ฝ ๐‘ฆ; ๐œ ; ๐‘  = ๐‘” ๐‘ฆ , โˆ€ ๐‘ฆ, ๐œ, ๐‘  5/16

  17. private circuits ๐‘”: 0,1 ๐‘œ โ†’ 0,1 ๐‘› ๐‘  ๐‘  ๐‘  1 2 ๐‘† โ€ฆ ๐œ 2 ๐œ 1 ๐œ โ„“ โ€ฆ circuit . encoder decoder . . . ๐‘ฆ ๐‘”(๐‘ฆ) ๐ท . . . ๐ฝ ๐‘ƒ . . . . . correctness: ๐‘ƒ ๐ท ๐ฝ ๐‘ฆ; ๐œ ; ๐‘  = ๐‘” ๐‘ฆ , โˆ€ ๐‘ฆ, ๐œ, ๐‘  privacy: for any set ๐‘„ of ๐‘’ wires in ๐‘ซ and for all ๐‘ฆ, ๐‘ง โˆˆ 0,1 ๐‘œ : ๐‘’ -priv {๐ท ๐‘„ (๐ฝ ๐‘ฆ; ๐œ ; ๐‘ )} ๐œ,๐‘  = {๐ท ๐‘„ (๐ฝ ๐‘ง; ๐œ ; ๐‘ )} ๐œ,๐‘  5/16

  18. this paper ๐‘, ๐‘ โˆˆ 0,1 2 โ†ฆ ๐‘ โ‹… ๐‘ โˆˆ 0,1 circuit decoder encoder ๐‘  ๐‘  ๐‘  1 2 ๐‘† โ€ฆ ๐‘ 0 ๐‘ 0 ๐‘ 0 ๐‘ 1 ADDITIONS ๐‘ 0 ๐‘ 2 ๐‘‘ 0 ๐‘‘ 1 โŠ• ๐‘— ๐‘ ๐‘— = ๐‘ โŠ• ๐‘— ๐‘‘ ๐‘— = ๐‘ โ‹… ๐‘ . . . . โŠ• ๐‘— ๐‘ ๐‘— = ๐‘ . . ๐‘‘ ๐‘’ ONLY ๐‘ ๐‘’ ๐‘ ๐‘’โˆ’1 ๐‘ ๐‘’ ๐‘ ๐‘’ 6/16

  19. ๐‘  ๐‘  ๐‘  1 2 ๐‘† โ€ฆ ๐‘ 0 ๐‘ 0 ๐‘ 0 ๐‘ 1 ADDITIONS ๐‘ 0 ๐‘ 2 ๐‘‘ 0 ๐‘‘ 1 . . . . . . ๐‘‘ ๐‘’ ONLY ๐‘ ๐‘’ ๐‘ ๐‘’โˆ’1 ๐‘ ๐‘’ ๐‘ ๐‘’ 6/16

  20. ๐‘  ๐‘  ๐‘  1 2 ๐‘† โ€ฆ ๐‘ 0 ๐‘ 0 ๐‘ 0 ๐‘ 1 ADDITIONS ๐‘ 0 ๐‘ 2 ๐‘‘ 0 ๐‘‘ 1 how much randomness is needed? . . . . . . ๐‘‘ ๐‘’ ONLY ๐‘ ๐‘’ ๐‘ ๐‘’โˆ’1 ๐‘ ๐‘’ ๐‘ ๐‘’ 6/16

  21. Ishai-Sahai-Wagner scheme ๐‘  0,๐‘’ โŠ• ๐‘ 0 ๐‘’ โŠ• ๐‘ ๐‘’ ๐‘ 0 ๐‘‘ 0 ๐‘ 0 ๐‘ 0 ๐‘  0,1 โŠ• ๐‘ 0 ๐‘ 1 โŠ• ๐‘ 1 ๐‘ 0 โ‹ฏ ๐‘  ๐‘‘ 1 ๐‘ 1 ๐‘ 1 ๐‘  1,๐‘’ โŠ• ๐‘ 1 ๐‘ ๐‘’ โŠ• ๐‘ ๐‘’ ๐‘ 1 0,1 โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎ โ‹ฎ ๐‘‘ ๐‘’โˆ’1 ๐‘  ๐‘  ๐‘  ๐‘’โˆ’1,๐‘’ โŠ• ๐‘ ๐‘’โˆ’1 ๐‘ ๐‘’ โŠ• ๐‘ ๐‘’ ๐‘ ๐‘’โˆ’1 0,๐‘’โˆ’1 1,๐‘’โˆ’1 โ‹ฏ ๐‘  ๐‘  ๐‘‘ ๐‘’ ๐‘ ๐‘’ ๐‘ ๐‘’ 0,๐‘’ 1,๐‘’ 7/16

  22. Ishai-Sahai-Wagner scheme ๐‘  0,๐‘’ โŠ• ๐‘ 0 ๐‘’ โŠ• ๐‘ ๐‘’ ๐‘ 0 ๐‘‘ 0 ๐‘ 0 ๐‘ 0 ๐‘  0,1 โŠ• ๐‘ 0 ๐‘ 1 โŠ• ๐‘ 1 ๐‘ 0 โ‹ฏ ๐‘  ๐‘‘ 1 ๐‘ 1 ๐‘ 1 ๐‘  1,๐‘’ โŠ• ๐‘ 1 ๐‘ ๐‘’ โŠ• ๐‘ ๐‘’ ๐‘ 1 0,1 โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎ โ‹ฎ ๐‘‘ ๐‘’โˆ’1 ๐‘  ๐‘  ๐‘  ๐‘’โˆ’1,๐‘’ โŠ• ๐‘ ๐‘’โˆ’1 ๐‘ ๐‘’ โŠ• ๐‘ ๐‘’ ๐‘ ๐‘’โˆ’1 0,๐‘’โˆ’1 1,๐‘’โˆ’1 โ‹ฏ ๐‘  ๐‘  ๐‘‘ ๐‘’ ๐‘ ๐‘’ ๐‘ ๐‘’ 0,๐‘’ 1,๐‘’ randomness complexity: ๐‘’(๐‘’ + 1)/2 7/16

  23. ๐‘  ๐‘  ๐‘  1 2 ๐‘† โ€ฆ ๐‘ 0 ๐‘ 0 ๐‘‘ 0 ๐‘ 0 ๐‘ 1 ADDITIONS ๐‘‘ 1 ๐‘ 0 ๐‘ 2 . . . . . . ONLY ๐‘ ๐‘’ ๐‘ ๐‘’โˆ’1 ๐‘‘ ๐‘’ ๐‘ ๐‘’ ๐‘ ๐‘’ 8/16

  24. any probe (wire value) has the form: ๐‘ž = เป„ ๐‘ ๐‘— ๐‘ โŠ• เป„ ๐‘  ๐‘˜ ๐‘™ ๐‘—,๐‘˜ โˆˆ๐‘ŒโŠ† 0,โ€ฆ,๐‘’ 2 ๐‘™โˆˆ๐‘โŠ† 1,โ€ฆ,๐‘† ๐‘  ๐‘  ๐‘  1 2 ๐‘† โ€ฆ ๐‘ 0 ๐‘ 0 ๐‘‘ 0 ๐‘ 0 ๐‘ 1 ADDITIONS ๐‘‘ 1 ๐‘ 0 ๐‘ 2 . . . . . . ONLY ๐‘ ๐‘’ ๐‘ ๐‘’โˆ’1 ๐‘‘ ๐‘’ ๐‘ ๐‘’ ๐‘ ๐‘’ 8/16

  25. any probe (wire value) has the form: ๐‘ž = เป„ ๐‘ ๐‘— ๐‘ โŠ• เป„ ๐‘  ๐‘˜ ๐‘™ ๐‘—,๐‘˜ โˆˆ๐‘ŒโŠ† 0,โ€ฆ,๐‘’ 2 ๐‘™โˆˆ๐‘โŠ† 1,โ€ฆ,๐‘† ๐‘ ๐‘ข โ‹… ๐‘ ๐‘ž โ‹… ๐‘ โŠ• ิฆ ๐‘ข โ‹… ิฆ = ิฆ ๐‘ก ๐‘ž ๐‘  with ิฆ ๐‘ = ๐‘ 0 , โ€ฆ , ๐‘ ๐‘’ , ๐‘ = ๐‘ 0 , โ€ฆ , ๐‘ ๐‘’ , ิฆ ๐‘  = ๐‘  0 , โ€ฆ , ๐‘  ๐‘† , ๐‘’+1 ร— ๐‘’+1 , ิฆ ๐‘ก ๐‘ž โˆˆ 0,1 ๐‘† ๐‘ ๐‘ž โˆˆ 0,1 8/16

  26. any probe (wire value) has the form: ๐‘ž = เป„ ๐‘ ๐‘— ๐‘ โŠ• เป„ ๐‘  ๐‘˜ ๐‘™ ๐‘—,๐‘˜ โˆˆ๐‘ŒโŠ† 0,โ€ฆ,๐‘’ 2 ๐‘™โˆˆ๐‘โŠ† 1,โ€ฆ,๐‘† ๐‘ ๐‘ข โ‹… ๐‘ ๐‘ž โ‹… ๐‘ โŠ• ิฆ ๐‘ข โ‹… ิฆ = ิฆ ๐‘ก ๐‘ž ๐‘  any sum of probes has the form: with ิฆ ๐‘ = ๐‘ 0 , โ€ฆ , ๐‘ ๐‘’ , ๐‘ = ๐‘ 0 , โ€ฆ , ๐‘ ๐‘’ , ิฆ ๐‘  = ๐‘  0 , โ€ฆ , ๐‘  ๐‘† , ๐‘ ๐‘ข โ‹… ๐‘ โ‹… ๐‘ โŠ• ิฆ ๐‘ก ๐‘ข โ‹… ิฆ ิฆ ๐‘  ๐‘’+1 ร— ๐‘’+1 , ิฆ ๐‘ก ๐‘ž โˆˆ 0,1 ๐‘† ๐‘ ๐‘ž โˆˆ 0,1 8/16

  27. algebraic characterization condition 1: a set of probes ๐‘„ = ๐‘ž 1 , โ€ฆ , ๐‘ž โ„“ satisfies condition 1 iff: ๐‘ ๐‘ข โ‹… ๐‘ โ‹… ๐‘ โ„“ โจ ๐‘—=1 ๐‘ž ๐‘— = ิฆ and 1, โ€ฆ , 1 is in the row (or column) space of ๐‘ 9/16

  28. algebraic characterization condition 1: a set of probes ๐‘„ = ๐‘ž 1 , โ€ฆ , ๐‘ž โ„“ satisfies condition 1 iff: ๐‘ ๐‘ข โ‹… ๐‘ โ‹… ๐‘ โ„“ โจ ๐‘—=1 ๐‘ž ๐‘— = ิฆ and 1, โ€ฆ , 1 is in the row (or column) space of ๐‘ the theorem: ๐ท is ๐‘’ -private โ‡” there does not exist ๐‘„ = ๐‘ž 1 , โ€ฆ , ๐‘ž โ„“ , โ„“ โ‰ค ๐‘’ that satisfies condition 1 9/16

  29. proof sketch โ‡’ assume ๐‘ž 1 , โ€ฆ , ๐‘ž โ„“ such that: ๐‘ ๐‘ข โ‹… ๐‘ โ‹… ๐‘ โ„“ โจ ๐‘—=1 ๐‘ž ๐‘— = ิฆ and (1, โ€ฆ , 1) is in the column space of ๐‘ 10/16

  30. proof sketch โ‡’ assume ๐‘ž 1 , โ€ฆ , ๐‘ž โ„“ such that: ๐‘ ๐‘ข โ‹… ๐‘ โ‹… ๐‘ โ„“ โจ ๐‘—=1 ๐‘ž ๐‘— = ิฆ and (1, โ€ฆ , 1) is in the column space of ๐‘ โ‡’ there exists ๐‘โ€ฒ โˆˆ 0,1 ๐‘’+1 s.t. ๐‘ โ‹… ๐‘โ€ฒ = (1, โ€ฆ , 1) 10/16

  31. proof sketch โ‡’ assume ๐‘ž 1 , โ€ฆ , ๐‘ž โ„“ such that: ๐‘ ๐‘ข โ‹… ๐‘ โ‹… ๐‘ โ„“ โจ ๐‘—=1 ๐‘ž ๐‘— = ิฆ and (1, โ€ฆ , 1) is in the column space of ๐‘ โ‡’ there exists ๐‘โ€ฒ โˆˆ 0,1 ๐‘’+1 s.t. ๐‘ โ‹… ๐‘โ€ฒ = (1, โ€ฆ , 1) 1 if ๐‘ โ‹… ๐‘ โ‰  (1, โ€ฆ , 1) ๐‘ ๐‘ข โ‹… ๐‘ โ‹… ๐‘ = ๐‘ = เตž Pr ิฆ 2 1 if ๐‘ โ‹… ๐‘ = 1, โ€ฆ , 1 10/16

  32. proof sketch โ‡’ assume ๐‘ž 1 , โ€ฆ , ๐‘ž โ„“ such that: ๐‘ ๐‘ข โ‹… ๐‘ โ‹… ๐‘ โ„“ โจ ๐‘—=1 ๐‘ž ๐‘— = ิฆ and (1, โ€ฆ , 1) is in the column space of ๐‘ โ‡’ there exists ๐‘โ€ฒ โˆˆ 0,1 ๐‘’+1 s.t. ๐‘ โ‹… ๐‘โ€ฒ = (1, โ€ฆ , 1) 1 if ๐‘ โ‹… ๐‘ โ‰  (1, โ€ฆ , 1) ๐‘ ๐‘ข โ‹… ๐‘ โ‹… ๐‘ = ๐‘ = เตž Pr ิฆ 2 1 if ๐‘ โ‹… ๐‘ = 1, โ€ฆ , 1 ๐‘ ๐‘ข โ‹… ๐‘ โ‹… ๐‘ = ๐‘ > Pr ิฆ ๐‘ ๐‘ข โ‹… ๐‘ โ‹… ๐‘ = เดค then, Pr ิฆ ๐‘ 10/16

  33. proof sketch โ‡’ assume ๐‘ž 1 , โ€ฆ , ๐‘ž โ„“ such that: ๐‘ ๐‘ข โ‹… ๐‘ โ‹… ๐‘ โ„“ โจ ๐‘—=1 ๐‘ž ๐‘— = ิฆ and (1, โ€ฆ , 1) is in the column space of ๐‘ โ‡’ there exists ๐‘โ€ฒ โˆˆ 0,1 ๐‘’+1 s.t. ๐‘ โ‹… ๐‘โ€ฒ = (1, โ€ฆ , 1) 1 if ๐‘ โ‹… ๐‘ โ‰  (1, โ€ฆ , 1) ๐‘ ๐‘ข โ‹… ๐‘ โ‹… ๐‘ = ๐‘ = เตž Pr ิฆ 2 1 if ๐‘ โ‹… ๐‘ = 1, โ€ฆ , 1 ๐‘ ๐‘ข โ‹… ๐‘ โ‹… ๐‘ = ๐‘ > Pr ิฆ ๐‘ ๐‘ข โ‹… ๐‘ โ‹… ๐‘ = เดค then, Pr ิฆ ๐‘ โ‡ a lot more technical... 10/16

  34. upper bound 11/16

  35. upper bound randomness complexity of ISW: ๐‘ƒ ๐‘’ 2 needs for a quadratic complexity? th theorem: there exists a ๐‘’ -private circuit for multiplication with randomness complexity ร•(๐‘’) . 11/16

  36. proof sketch probabilistic method: non-constructive! 12/16

Recommend


More recommend