radiation environment of the inner magnetosphere ouiet
play

Radiation Environment of the Inner Magnetosphere: Ouiet and Storm - PowerPoint PPT Presentation

Radiation Environment of the Inner Magnetosphere: Ouiet and Storm Periods Mikhail Panasyuk Skobeltsyn Institute of Nuclear Physics of Lomonosov Moscow State University SEP GCR 40000 km RB LEO < 1000km The Earths radiation


  1. Radiation Environment of the Inner Magnetosphere: Ouiet and Storm Periods Mikhail Panasyuk Skobeltsyn Institute of Nuclear Physics of Lomonosov Moscow State University

  2. SEP GCR 40000 km RB LEO < 1000km The Earth’s radiation environment at LEO

  3. Near- Earth space radiation environment: Low inclination Count rates (arbitrary units) of protons with energy higher of 0.7 MeV and electrons with energy higher than 0.5 MeV for the NASA SAMPEX Satellite in the low earth orbit (LEO) at ~ 600 km altitude.

  4. Near- Earth space radiation environment: High inclination Count rates (arbitrary units) of protons with energy higher of 0.7 MeV and electrons with energy higher than 0.5 MeV for the NASA SAMPEX Satellite in the low earth orbit (LEO) at ~ 600 km altitude.

  5. SAA RB Altitude, км ISS Latitude

  6. R- 16 dosemeter 2 argon ionization chambers with two different plastic shieldings – 1,5 and 3 g/cm2 Onboard MIR station since 1987 till 2000!

  7. South Atlantic Anomaly Solar minimum - the middle of 90’s Longitude Solar maximum – the beginning of 90’s Longitude

  8. Daily averaged doses rates since 1987 100 МИР Д 1 90 МИР Д 2 МКС Д 1 80 МКС Д 2 70 mRad/day мрад / сутки .. 60 D2 MIR data since 50 1991 till 2000 40 30 The strong 20 D1 solar-cycle variation 10 0 2 Январь , 1 Январь , 2 Январь , 1 Январь , 2 Январь , 1 Январь , 2 Январь , 1 Январь , 2 Январь , 1991 1993 1995 1997 1999 2001 2003 2005 2007 1991 2000 Year Дата

  9. Daily averaged doses rates since 1960 till 1969 Nuclear test radiation Different spacecrafts h ~ 350 – 400 km, i~ 65 o Solar cycle variation W The first observational result of solar sycle variations at LEO (Vernov, et al, 1972) 1960 1970

  10. The main mechanizm of radiation belt formation Balance between transport time (radial diffusion from outer RB edge) - τ t and loss time - τ l For inner belt, say at L< 2 τ t >> τ l But there is a local source for inner RB protons – CRAND

  11. CRAND proton Space High energy cosmic ray particle (H) electron neutrons 100 km Atmosphere 0 km

  12. The space-temporal structure of the inner radiation belt will be determined mainly by losses only (for steady-state source) For high energy protons it is ionization losses with residual atmosphere

  13. MIR station radiation doses in the 22nd solar cycle Radiation Dose [mRad/month] Dose D2 2000 Dose D1 1500 1000 Doses 500 0 250 F10.7 average 200 Solar activity 150 100 50 1.4E-14 Atmospheric density 1.2E-14 MSISE-90 at h=400 km under SSA (-35,-35) Density, [g cm-3] 1.0E-14 8.0E-15 6.0E-15 4.0E-15 2.0E-15 1999 2000 1991 1993 1995 1997 1999 Year

  14. Solar cycle flux/atmospheric density variations RB proton (>10 MeV) flux Loss time as a function of atmospheric density variations Solar Solar activity variations max

  15. MIR station radiation doses in the 22nd solar cycle Radiation Dose [mRad/month] Dose D2 2000 Dose D1 1500 The same sign for GCR solar cycle variations! 1000 Doses 500 0 250 F10.7 average 200 Solar activity 150 100 50 1.4E-14 Atmospheric density 1.2E-14 MSISE-90 at h=400 km under SSA (-35,-35) Density, [g cm-3] 1.0E-14 8.0E-15 6.0E-15 4.0E-15 2.0E-15 1999 2000 1991 1993 1995 1997 1999 Year

  16. Radiation doses vs GCR variations Murmansk GCR Moscow Radiation doses « MIR » ISS

  17. ISS expected results 2000MAX 2006MIN

  18. ISS radiation puzzle

  19. ISS/Russian module R-16 in operation since summer of 2000. SRC (4 instruments DB –8) - since summer of 2001.

  20. DB-8 instruments 2 (shielded and unshielded) semiconductor detectors

  21. SRC placements on board ISS Блок Расположение ДБ -8 № 1 Правый борт , за панелью № 410 ДБ -8 № 2 Левый борт , за панелью № 244 ДБ -8 № 3 Правый борт , за панелью № 447 ДБ -8 № 4 Правый борт , за панелью № 435 Р -16 На потолке салона большого диаметра , за панелью № 327 АИ Правый борт , за панелью № 447 БКР Правый борт , за панелью № 447

  22. R-16 daily averaged doses rates 100 МИР Д 1 90 МИР Д 2 МКС Д 1 80 МКС Д 2 70 Канал Д 1 мрад / сутки .. 60 функцио - нировал до 50 12 мая 2006 года 40 Канал Д 2 30 функцио - 20 нировал до 9 апреля 2006 10 года 0 2 Январь , 1 Январь , 2 Январь , 1 Январь , 2 Январь , 1 Январь , 2 Январь , 1 Январь , 2 Январь , 1991 1993 1995 1997 1999 2001 2003 2005 2007 Дата

  23. DB-8 daily averaged doses rates since 2001 100 ДБ -8 № 1 90 ДБ -8 № 4 80 70 мрад / сутки . 60 50 40 30 20 10 0 2001 2007 01 янв 01 01 янв 02 01 янв 03 01 янв 04 31 дек 04 31 дек 05 31 дек 06 31 дек 07 Дата

  24. Murmansk GCR Moscow Radiation doses « MIR » ISS

  25. Dynamics of the inner proton radiation zone Losses: particle interactions with residual atmosphere Source: For ~100 MeV protons - CRAND Balance between losses and “local” source strength

  26. GCR as a source of SAA protons (CRAND) M u r m a n s k G C R M o s c o w Weak source R a d i a t i o n d o s e s « M I R » I S S Strong source, Weak source, weak losses strong losses RB Strong source Altitude, км Latitude

  27. Daily averaged doses rates

  28. Daily averaged doses rates 450 ISS altitude since 2001 Altitude, Km 400 350 300 02.08.2001 18.02.2002 06.09.2002 25.03.2003 11.10.2003 28.04.2004 14.11.2004 Data

  29. Solar cycle variations at LEO since 1960 (< 400km) MIR Salut S/C ISS 2006 1960

  30. Conclusions 1.SAA anomaly radiation is the principal source of radiation hazard at altitude >350 km 2. Long–term variations of radiation doses are dependent both losses and strengh of source(CRAND) of particles during solar cycle 3 . During very strong SEE epoch from 2001 till 2004 there was a very quite radiation condition onboard ISS (and at LEO)

  31. Storm periods: SEP penetration at low altitudes

  32. SEP penetration at low altitudes – low-latitude Λ b boundary of SEP SEP penetration Satellite’s orbit

  33. October- November’03 Radiation Storm SEP penetration at low altitudes Дни 2003 300 301 302 303 304 305 306 307 308 3.5 0.10 -0.00 -0.10 3.0 -0.30 -0.50 -0.70 L -0.90 2.5 -1.00 -1.10 -1.20 -1.30 2.0 -1.40 -1.50 -1.60 1.5 -1.70 7 0 6 -100 ) T 5 н L -200 t( s D 4 -300 3 -400 299 300 301 302 303 304 305 306 307 308 309 Дни 2003

  34. October- November Radiation Storm SEP penetration at low altitudes Λ b 90 MeV proton’s penetration Dst boundary moves toward the equator Λ b ~ 49 о accordingly with Dst Meteor-3 data , Skobeltsyn Institute of Nuclear Physics,Applied Geophysical Institute

  35. October- November’03 Radiation Storm SEP penetration at low altitudes Variation of proton penetration boundary during isolated substorm Coronas-Fdata, Skobeltsyn Institute of Nuclear Physics Substorm activity as a regulator of SEP’s penetration

  36. Radiation Storm of October- November,2003 ISS dosimetry DB-8 ISS/SRC,R16 data, SINP, IMBP

  37. October- November’ 03 vs October’ 89 Radiation Storms: ISS/R16 data October,89 MIR Solar particles dose effect (total): 3070mrad October,03 ISS Solar particles dose effect : 140mrad

  38. Calculated ISS doses vs initial orbital parameters 40 Oct.,28 35 SPE oct 28 SPE oct 29 Доза за сутки , мГрей . 30 25 20 Doses 15 10 5 0 0 90 180 270 360 Долгота восходящего узла орбиты , градус Longitude Calculated doses fo DB8 in dependence of initial longitude of ISS for October, 28,29 event

  39. Storm periods: 2. Relativistic electron precipitations from radiation belts What’s new in this field?

  40. 2. Relativistic electron precipitations from radiation belts What’s new in this field?

  41. “Tatiana” satellite data Е е >3.5 МэВ ) at ~900 km 5 April D st =-85 nT 12 April 20 May D st =-70 nT D st =-103 nT 15 May D st =-263 nT 8 May D st =-127 nT

  42. “Catastrophic” precipitations of relativistic electrons 5 х 10 25 electrons during ~8 days Outer belt: 2 х 10 25 electrons ! Balloon experiments at high latitudes R. Myllan, et al

  43. SEP GCR 40000 km ISS Conclusions 1.Radiation “quite-time” level at LEO is mainly defined by the balance between the strength of CRAND and losses at SAA; 2.Radiation “ storm-time” level at LEO is mainly defined by SEP’s (>1 MeV) penetration pattern at low latitudes, which is ruled by substorm and storm activity; 3. More complex picture one should expect for electron component which is needed for further study

  44. SEP GCR 40000 km ISS Thank you

Recommend


More recommend