r d effort in labs 5 and 6
play

R&D EFFORT IN LABS 5 AND 6 Anna Pla-Dalmau R&D Review - PowerPoint PPT Presentation

R&D EFFORT IN LABS 5 AND 6 Anna Pla-Dalmau R&D Review October 29, 2014 SCINTILLATION DETECTOR DEVELOPMENT Anna Pla-Dalmau Group leader Focus: wire chamber winding plastic scintillation extrusion R&D Interests:


  1. R&D EFFORT IN LABS 5 AND 6 Anna Pla-Dalmau R&D Review October 29, 2014

  2. SCINTILLATION DETECTOR DEVELOPMENT • Anna Pla-Dalmau – Group leader • Focus: – wire chamber winding – plastic scintillation extrusion • R&D Interests: – Wavelength shifting fiber and scintillator co-extrusion – Coatings for extruded scintillator – Radiation-resilient plastic scintillator – Neutron-sensitive plastic scintillator – Water-based liquid scintillator 2 Anna Pla-Dalmau - PPD / DDOD / SDD 10/29/2014

  3. SCINTILLATION DETECTOR DEVELOPMENT SCINTILLATOR EXTRUSIONS MINOS MINERVA generic shapes Mu2e 3 Anna Pla-Dalmau - PPD / DDOD / SDD 10/29/2014

  4. SCINTILLATION DETECTOR DEVELOPMENT • R&D • production FNAL-NICADD EXTRUSION LINE FACILITY SINCE 2003 – LAB 5 4 Anna Pla-Dalmau - PPD / DDOD / SDD 10/29/2014

  5. SCINTILLATION DETECTOR DEVELOPMENT EXTRUDED SCINTILLATOR SHIPMENTS: NOT JUST USA! 5 Anna Pla-Dalmau - PPD / DDOD / SDD 10/29/2014

  6. SCINTILLATION DETECTOR DEVELOPMENT EXTRUDED SCINTILLATOR SHIPMENTS – LIST: FNAL-NICADD LINE, OUTSIDE USA EARLY WORK • T2K • D0 - pioneer • PIERRE AUGER • STAR • MINOS • TRIUMF • K2K • JPARC • KEK FNAL-NICADD LINE, USA • INFN • MINERVA – PADOVA • DOUBLE CHOOZ – NAPOLI • T2K – BOLOGNA • MICE – TORINO • JLAB – GRAN SASSO • BELLE II 6 Anna Pla-Dalmau - PPD / DDOD / SDD 10/29/2014

  7. SCINTILLATION DETECTOR DEVELOPMENT – PLA-DALMAU I- WLS FIBER AND SCINTILLATOR CO- EXTRUSION – Proof of concept – shoe string: • Lab-size extruder from surplus - ALUMINUM DIE (5 cm CUBE, SLANTED FRONT) • Adapted small puller - KURARAY FIBER FED FROM THE TOP – NOT IDEAL • Old multi-coated WLS fiber • Manual fiber feeder – Problem  fiber stretched • Poor fiber feeder Challenge: Fiber and scintillator are • NEW ALUMINUM DIE – MELT COMES OUT AT 90º • KURARAY FIBER FED STRAIGHT of the same material (polystyrene) 7 Anna Pla-Dalmau - PPD / DDOD / SDD 10/29/2014

  8. SCINTILLATION DETECTOR DEVELOPMENT I- WLS FIBER AND SCINTILLATOR CO- EXTRUSION (cont’d) FUTURE WORK • Proper fiber feeder • Different WLS fiber material – glass – High temperature glass – Need doped glass fiber with: • Green emission • Reasonable decay time – Started to look for glass fiber supplier 8 Anna Pla-Dalmau - PPD / DDOD / SDD 10/29/2014

  9. SCINTILLATION DETECTOR DEVELOPMENT II- THIN EXTRUDED SCINTILLATOR • Extruded scintillator ribbons • Potential use in calorimetry applications • Made: 100 mm x 2 mm extruded scintillator • Without reflective coating • Developed new die and sizing tooling, process • Serious mechanical challenges: – Threading extrusion line (start-up) – Sizing part – control shape and size • Samples used in the TEST BEAM by T-1015 FUTURE WORK • Explore sleek coating in sizing tool - MINOR 9 Anna Pla-Dalmau - PPD / DDOD / SDD 10/29/2014

  10. SCINTILLATION DETECTOR DEVELOPMENT III- POLYETHYLENE (PE) COATING • TYVEK is fused PE co-extruder • TYVEK is a good reflector extruder • Current TiO 2 /polystyrene coating yields a diffuse reflector (wet interface) • PE does not stick to polystyrene core • HDPE, LDPE, LLDPE – various grades • Usual extrusion setup co-extruder – Poor control of final strip size, shape cooling tank • Tandem extrusion setup cooling tank – New tooling required – New equipment layout 10 Anna Pla-Dalmau - PPD / DDOD / SDD 10/29/2014

  11. SCINTILLATION DETECTOR DEVELOPMENT III- POLYETHYLENE (PE) COATING (cont’d) • Difficult coating application cooling tank – Problem – tooling – short die-land – Machined a die-land extension • Preliminary results show scintillator with 2 nd die TiO 2 /PE coating has 20% more light than current scintillator with TiO 2 /PS coating FUTURE WORK • Best coating: PE grade and TiO 2 concentration • Extrusion parameters • Sizing tooling after 2 nd die 11 Anna Pla-Dalmau - PPD / DDOD / SDD 10/29/2014

  12. SCINTILLATION DETECTOR DEVELOPMENT IV- RADIATION-RESILIENT PLASTIC SCINTILLATORS – After 20 years! – New materials available: PS • Clear, used in encapsulation – CURRENT PLASTIC SCINTILLATORS USE • Polystyrene (PS) 1200 • Polyvinyltoluene (PVT) STANDARD BLUE SCINTILLATOR 1000 • Dopants Y UNITS Organic fluorescent compounds 800 RARY PULSE HEIGHT PLOT ARBITRAR USING 207 Bi SOURCE • PPO, PTP Y - ARBI 600 (1 MeV electrons) • POPOP, bis-MSB, BBOT INTENSITY 400 • Susceptible to radiation Losses in transmission even 200 at high dopant concentrations 0 0 100 200 300 400 500 CH CHAN ANNEL N L NUMBE BER 12 Anna Pla-Dalmau - PPD / DDOD / SDD 10/29/2014

  13. SCINTILLATION DETECTOR DEVELOPMENT IV- RADIATION- RESILIENT PLASTIC SCINTILLATORS (cont’d) – Tested polyurethanes R 4 ,R 5 : (CH 2 )n DISCOLORATION – Tested epoxies + DI-AMINES DISCOLORATION – Tested polysiloxanes PLAIN - UNDOPED AFTER IRRADIATION NO DISCOLORATION 13 Anna Pla-Dalmau - PPD / DDOD / SDD 10/29/2014

  14. SCINTILLATION DETECTOR DEVELOPMENT IV- RADIATION- RESILIENT PLASTIC SCINTILLATORS (cont’d) Polysiloxanes - One component – RTV – Acetic acid smell – Mostly aliphatic – Full clarity range: from translucent to very clear – Inexpensive, generally – No scintillation – Add scintillator (naphthalene, anthracene) – Add dopants: • Organic: PPO, POPOP – Solubility problems  opaque samples Work in progress to address these disadvantages before sending for irradiation 14 Anna Pla-Dalmau - PPD / DDOD / SDD 10/29/2014

  15. SCINTILLATION DETECTOR DEVELOPMENT IV- RADIATION- RESILIENT PLASTIC SCINTILLATORS (cont’d) Polysiloxanes – Two-part components – Pt or Rh catalyst 50% CeCl3, 10% POPOP, Layers 700 – Aliphatic Integration: 7338 600 • Very clear, no scintillation 500 PULSE HEIGHT PLOT 400 USING 207 Bi SOURCE • Add scintillator 300 (1 MeV electrons) 200 – Inorganic: CeF 3 , CeCl 3 100 Big solubility problems! 0 0 50 100 150 200 250 • Add secondary dopants: Channel Number – Organic: POPOP 10% CeCl3, 1% POPOP, Layers ~ solubility 500 Integration: 3865 400 PULSE HEIGHT PLOT 300 – Tested: JCR, Sylgard 184 USING 207 Bi SOURCE 200 (1 MeV electrons) 100 0 0 50 100 150 200 250 Channel Number 15 Anna Pla-Dalmau - PPD / DDOD / SDD 10/29/2014

  16. SCINTILLATION DETECTOR DEVELOPMENT IV- RADIATION- RESILIENT PLASTIC SCINTILLATORS (cont’d) Polysiloxanes – Two-part components – Pt or Rh catalyst 10% NAPH, 1% PPO, 0.05% POPOP, A 3000 – Aliphatic Integration: 43783 2500 • Very clear, no scintillation 2000 PULSE HEIGHT PLOT 1500 • Add scintillator USING 207 Bi SOURCE 1000 – Organic: naph, anth (1 MeV electrons) 500 Solubility problems 0 0 50 100 150 200 250 • Add dopants: Channel Number – Organic: PPO, POPOP 10% PPO, 0.05% POPOP ~ solubility 2500 Integration: 62483 2000 – Tested: JCR, Sylgard 184 1500 PULSE HEIGHT PLOT USING 207 Bi SOURCE 1000 (1 MeV electrons) 500 0 0 50 100 150 200 250 16 Anna Pla-Dalmau - PPD / DDOD / SDD 10/29/2014 Channel Number

  17. SCINTILLATION DETECTOR DEVELOPMENT IV- RADIATION- RESILIENT PLASTIC SCINTILLATORS (cont’d) Polysiloxanes – Two-part components – Pt or Rh catalyst – Aromatic • Still clear PS STANDARD SCINT (BLUE) - LS SCINT (RED) • Potential scintillator 1400 • Add dopants: 1200 PULSE HEIGHT PLOT Y UNITS USING 207 Bi SOURCE – Organic: PPO, POPOP 1000 (1 MeV electrons) RARY ARBITRAR ~ solubility 800 • Add solvent for dopants: Y - ARBI 600 INTENSITY – Oil – DC705 400 – HC – LAB 200 – Tested: LS, CSL 0 0 100 200 300 400 500 CH CHAN ANNEL N L NUMBE BER Work in progress! 17 Anna Pla-Dalmau - PPD / DDOD / SDD 10/29/2014

  18. SCINTILLATION DETECTOR DEVELOPMENT IV- RADIATION- RESILIENT PLASTIC SCINTILLATORS (cont’d) FUTURE WORK • Continue to look for clear materials • Test and characterize new materials • Check scintillation light yield • Perform radiation damage studies 18 Anna Pla-Dalmau - PPD / DDOD / SDD 10/29/2014

  19. SCINTILLATION DETECTOR DEVELOPMENT V- NEUTRON-SENSITIVE PLASTIC SCINTILLATOR • In support of the SuperCDMS experiment • Prepared polystyrene-based scintillator doped with a high concentration (10 – 20 %) of trimethylborate (TMB) – 10% TMB – full polymerization – 20% TMB – polymerization affected – soft materials • All samples turned cloudy – TMB is moisture sensitive • TMB is not a good dopant in plastic scintillators – TMB is currently used in the liquid scintillator by SCDMS FUTURE WORK • Continue to look for boron-containing additives - MINOR 19 Anna Pla-Dalmau - PPD / DDOD / SDD 10/29/2014

  20. SCINTILLATION DETECTOR DEVELOPMENT VI- WATER-BASED LIQUID SCINTILLATORS – Water does not scintillate – Get scintillator/dopants into solution – Use surfactants: • TRITON X – several grades – TRITON X-100 – TRITON X-102 – TRITON X-114 – Focused on TRITON X-102 – Tested different concentrations: • ie: samples 1, 2 and 3 – Checked light yield using 207 Bi source 20 Anna Pla-Dalmau - PPD / DDOD / SDD 10/29/2014

  21. SCINTILLATION DETECTOR DEVELOPMENT VI- WATER-BASED LIQUID SCINTILLATORS (cont’d) FUTURE WORK • Just started! Lots to do… • Improve light yield • Improve solubility • Optimize concentration • Test other surfactants • Test other dopants 21 Anna Pla-Dalmau - PPD / DDOD / SDD 10/29/2014

Recommend


More recommend